《抽象调和分析教程》是一部学习群上调和分析的经典教材,以简明易懂的方式讲授群上傅里叶分析与酉表示理论。抽象理论是研究具体案例的升华,并提供一个统一的框架。作为经典傅里叶分析的推广,抽象调和分析理论为不少现代分析奠定了基础。本书中不仅讲述抽象理论,也精心挑选了一些具体例子,用这些示例来阐明结果并显示抽象理论适用之广度。在简要回顾了Banach代数理论和谱理论的相关内容后,本书着重讲授局部紧群、Haar测度和酉表示的基本结论,包括Gelfand-Raikov存在性定理。作者用两章的篇幅分析了阿贝尔群和紧群,然后探讨了诱导表示,包括非本原性定理(Imprimitivity Theorem)及其应用。本书最后对非紧非阿贝尔群的表示论也做了一些讨论。在第2版中新增了冯·诺伊曼代数介绍、马克·卡克(Mark Kac)关于维纳定理的受限形式的简单证明、利用四元数解释SU(2)和SO(3)之间的关系以及讨论离散海森堡群及其中心商的表示等。本书可供高等院校数学专业本科生与研究生学习和参考。