本书聚焦近期涌现的人工智能、机器人工程、智能医学工程等新工科专业对于人才培养的实际需求,着力解决人工智能基础知识交叉贯通不足、配套实验实践支撑不强等问题。书中主要内容包括Python编程基础、神经网络基础、深度学习计算框架、卷积神经网络、序列到序列网络、目标检测及其应用、语义分割及其应用等。 本书结合高等院校人工智能相关专业的知识体系,将基础知识和编程实践相结合,通过代码实例分析,使得基础知识变得直观易懂;通过基础Python编程和PyTorch框架编程的结合进行实践,适应互联网时代共享代码的社区生态需求;通过综合实践例程,使读者经历知识学习、数据准备、代码编写、参数调试、结果分析等过程,在掌握相关技术的同时提高学习兴趣。 本书可满足高等院校人工智能相关专业的学生学习基础知识及实践创新的需求,也可为电子、信息等相关领域的从业者转型人工智能领域提供入门学习资料。