本书围绕工业生产过程智能监控的若干核心问题展开论述。首先介绍工业过程运行监测和故障溯源推理的重要性、工业过程智能监控相关的机器学习理论基础。在此基础上,介绍过程生产状态的感知与异常情况的预警,即过程监测方法,具体包括针对大规模工业过程的分布式监测方法、针对复杂时变过程的条件驱动建模方法、针对过程正常慢变化和工况切换的自适应监测方法等。接下来介绍异常变量的隔离与过程故障的诊断,即故障诊断方法,具体包括针对故障过程时变的多模型判别方法、针对历史数据稀缺的增量学习方法、迁移学习和零样本学习方法等。 本书可作为自动控制或信息科学等相关专业研究生的教学参考书,同时对从事自动化过程监控研究、设计、开发和应用的广大工程技术人员也具有一定的参考价值。