第1章 贝叶斯思想简介 1
1.1 贝叶斯思想的核心 2
1.2 概率论的两大学派 2
1.3 小结 4
第2章 贝叶斯概率 5
2.1 先验概率 6
2.1.1 先验概率的定义 6
2.1.2 信息先验* 6
2.1.3 不知情的先验* 7
2.2 条件概率 7
2.2.1 条件概率的定义 7
2.2.2 事件的互斥性 8
2.2.3 事件的独立统计性 8
2.3 后验概率 8
2.3.1 后验概率的定义 9
2.3.2 后验概率与先验概率在应用上的区分 9
2.4 似然函数 10
2.4.1 似然函数的定义 11
2.4.2 似然函数的应用 12
2.5 贝叶斯公式 13
2.5.1 贝叶斯公式的定义 13
2.5.2 贝叶斯公式的推导 14
2.5.3 贝叶斯公式的应用 16
2.6 小结 18
第3章概率估计 20
3.1 什么是估计 21
3.2 概率密度函数 22
3.2.1 概率密度函数的定义 22
3.2.2 连续型概率分布 24
3.2.3 离散型概率分布 33
3.3 极大似然估计(MLE) 36
3.3.1 什么是极大似然估计 36
3.3.2 极大似然估计的应用 37
3.4 最大后验估计(MAP) 42
3.4.1 什么是最大后验估计 42
3.4.2 最大后验估计的应用 43
3.5 贝叶斯估计 45
3.5.1 什么是贝叶斯估计 45
3.5.2 贝叶斯估计算法思想 46
3.5.3 贝叶斯估计的应用概述 46
3.6 小结 47
第4章 贝叶斯分类 48
4.1 朴素贝叶斯算法 49
4.1.1 理解朴素贝叶斯算法 49
4.1.2 应用朴素贝叶斯算法 51
4.1.3 使用朴素贝叶斯算法实现案例 60
4.2 贝叶斯分类器 64
4.2.1 贝叶斯分类器简介 64
4.2.2 贝叶斯分类器的原理 66
4.2.3 对贝叶斯分类器进行训练 67
4.3 贝叶斯分类器构建 69
4.3.1 加载、解析数据 69
4.3.2 训练数据 70
4.3.3 保存、加载模型 74
4.3.4 使用模型 76
4.4 标准的分类器构建——鸢尾花分类 77
4.4.1 制作数据集 77
4.4.2 切分数据集 77
4.4.3 鸢尾花分类案例代码 78
4.5 小结 79
第5章 从贝叶斯到随机场 80
5.1 对最小错误分类进行结果优化 81
5.2 马尔科夫链 83
5.2.1 状态转移 85
5.2.2 齐次马尔科夫链 86
5.3 马尔科夫随机场 88
5.3.1 什么是马尔科夫随机场 88
5.3.2 基于马尔科夫随机场的图像分割实例 95
5.4 图像分割案例及调试 100
5.4.1 图像分割案例 100
5.4.2 图像分割案例完整实现 103
5.5 小结 105
第6章 参数估计 107
6.1 参数估计的区分 108
6.1.1 点估计 108
6.1.2 区间估计 109
6.1.3 区分点估计与区间估计 114
6.2 极大似然估计 117
6.2.1 线性回归 118
6.2.2 logistics回归 121
6.3 贝叶斯估计与推导 125
6.4 小结 127
第7章 机器学习与深度学习 129
7.1 人工智能介绍 130
7.1.1 机器人 130
7.1.2 语音识别 130
7.1.3 自然语言处理 131
7.1.4 图像识别 131
7.1.5 博弈 132
7.2 机器学习 132
7.2.1 什么是机器学习 132
7.2.2 机器学习算法 136
7.2.3 一个完整的机器学习 154
7.3 深度学习 156
7.3.1 了解深度学习 156
7.3.2 深度学习原理 158
7.3.3 一个完整的神经网络 162
7.3.4 实现一个深度学习神经网络——ResNet 164
7.4 小结 167
第8章 贝叶斯网络 169
8.1 贝叶斯网络的概念 170
8.1.1 了解贝叶斯网络 170
8.1.2 应用贝叶斯网络 172
8.2 使用贝叶斯网络实现分类功能 174
8.2.1 制作并切分数据集 174
8.2.2 构建贝叶斯网络模型 175
8.2.3 训练模型 178
8.2.4 验证模型 179
8.2.5 贝叶斯网络案例完整实现 180
8.3 贝叶斯网络的结构 182
8.3.1 head_to_head结构 182
8.3.2 tail_to_tail结构 183
8.3.3 head_to_tail结构 183
8.3.4 贝叶斯网络各结构的逻辑 184
8.3.5 道路交通监测案例 185
8.4 小结 189
第9章 动态贝叶斯网络 190
9.1 动态贝叶斯网络的概念 191
9.1.1 贝叶斯网络由静态扩展为动态 191
9.1.2 隐马尔科夫模型(HMM) 192
9.2 细谈隐马尔科夫模型 194
9.2.1 求隐含状态序列(解码问题) 194
9.2.2 求观测序列(评估问题) 196
9.2.3 求模型参数(学习问题) 199
9.3 实现“智能”的输入法 201
9.3.1 案例分析 201
9.3.2 训练初始模型 202
9.3.3 实现案例的功能 206
9.4 小结 208
第10章 贝叶斯深度学习 210
10.1 神经网络参数学习 211
10.1.1 BP算法的流程 211
10.1.2 实现BP算法 218
10.1.3 BP算法实现代码 221
10.2 贝叶斯深度学习的概念 224
10.2.1 贝叶斯神经网络与普通神经网络的区别 225
10.2.2 贝叶斯深度学习推导 227
10.2.3 贝叶斯深度学习的优势 231
10.3 贝叶斯深度学习案例 233
10.3.1 数据拟合案例 233
10.3.2 贝叶斯深度学习完整实现数据拟合 244
10.4 小结 248