《推荐系统实战宝典》主要围绕推荐系统进行讲解,全面介绍了掌握推荐系统技术所需要学习的算法及步骤。书中描述了基于点击率评估、RBM的推荐,基于标签的推荐,基于用户行为、内容、模型、流行度、邻域、图的推荐,以及基于上下文的推荐,还有使用自然语言处理或者矩阵分解的推荐,包括算法原理的介绍,对于每一种推荐方式也做了细粒度的分析及场景化的应用。还分享了作者在实际应用中的解决方案及扩展思路。除此之外,本书还会涉及一些基础算法及数学知识,并且包括对于推荐算法的一些模型评估以及校验的描述。阅读本书可以帮助读者学习基础算法和推荐算法的原理及实际应用,同时还能学习到推荐系统开发的设计思想、设计模式、开发流程等。这些对于读者全面提高自己的推荐系统开发水平有很大的帮助。《推荐系统实战宝典》为读者提供了全部案例源代码下载和超过1100分钟的高清学习视频,读者可直接扫描二维码观看。《推荐系统实战宝典》适合从事推荐系统相关领域研发的人员、高年级本科生或研究生、热衷于推荐系统开发的读者阅读。