本书是一本关于数据流挖掘与在线学习算法的著作,该书全面、系统阐述了数据流机器学习的模型、算法、平台与实例。全书共10 章,分为4 个部分:第1 部分包括第1~3 章,介绍数据流机器学习基础知识;第2 部分(第4~6章)介绍基于频繁模式的数据挖掘与在线学习算法;第3 部分是基于模型的在线学习算法,包括第7 章在线稀疏学习模型和第8 章在线低秩表示模型;第4 部分(第9、10 章)介绍基于实例的数据流概念演变检测和在线学习算法。对每种典型在线学习算法的背景、模型定义、算法设计思想以及相关实验分析等,书中都有都完整的阐述。同时,也详细分析了一些与在线学习密切相关的离线数据挖掘和机器学习算法与应用。本书的实验平台开源、简单易用。每章后面都设计了操作性强的课程实验。在图书“下载专区”目录下,免费提供了本书代码和相关教学配套资源的在线浏览与下载。本书适合作为高等学校数据科学与大数据应用、智能科学与技术、人工智能等专业本科生和研究生的教材与教学参考书,也可供研究数据流挖掘与在线学习算法的科技人员阅读和使用。