基础篇 医学图像计算机辅助检测与诊断、
深度学习算法基础知识
绪论 003
第1章 医学图像计算机辅助检测/诊断(CAD)系统 007
1.1 医学图像CAD系统概述 007
1.2 不同部位医学图像CAD系统分述 009
1.2.1 基于胸部X线片的肺结节CAD系统 009
1.2.2 基于CT图像的肺部CAD系统 011
1.2.3 乳腺医学图像CAD系统 018
1.2.4 结直肠医学图像CAD系统 029
1.2.5 前列腺医学图像CAD系统 034
1.2.6 其他前列腺癌相关医学图像CAD系统 039
1.3 医学图像CAD的性能评估 040
1.3.1 医学图像数据集 040
1.3.2 评估方法 041
1.4 系统所用算法和特征汇总 045
1.5 面临的问题和研究展望 058
1.6 未来展望 060
1.7 结语 062
第2章 深度学习方法 064
2.1 引言 064
2.2 推理期 064
2.3 知识期 065
2.4 学习期 066
2.4.1 BP神经网络 066
2.4.2 浅层机器学习算法 071
2.4.3 深度学习算法 088
2.4.4 全连接网络 095
2.4.5 AlexNet网络 099
2.5 本章小结 113
应用篇 深度学习算法应用于肺结节诊断案例
第3章 肺结节深度学习诊断引论 117
3.1 研究目的和意义 117
3.2 研究目标和内容 120
3.2.1 基于人工免疫优化的征象分类网络融合方法 121
3.2.2 结合半监督协同学习与深度学习的征象模糊分类方法 121
3.2.3 胶囊网络的三元组强化学习及其征象分类方法 121
3.3 实验样本选择 122
3.3.1 样本图像尺寸 122
3.3.2 征象选择 123
第4章 基于人工免疫优化的征象分类网络融合方法 127
4.1 引言 127
4.2 子网络融合的人工免疫优化方法 129
4.2.1 预测亲和度与剩余平均相似度 130
4.2.2 克隆与变异 131
4.3 征象分类方法 134
4.3.1 子网络构成 135
4.3.2 集成决策分类 136
4.4 实验与结果分析 137
4.4.1 实验设置 137
4.4.2 网络训练 138
4.4.3 集成分类器与子分类器性能比较 139
4.4.4 AIA-DNF与其他分类器融合方法比较 141
4.4.5 AIA-DNF方法与其他二分类方法比较 144
4.4.6 多级Inception网络与传统CNN比较 145
4.5 结语 146
第5章 结合半监督协同学习与深度学习的征象模糊分类方法 147
5.1 引言 147
5.2 模糊协同森林 149
5.2.1 特征提取 149
5.2.2 构建协同森林 150
5.2.3 模糊分类 151
5.3 融合生成对抗的半监督协同学习 153
5.3.1 DCGAN 154
5.3.2 半监督协同学习 156
5.4 实验与结果分析 158
5.4.1 实验设置 158
5.4.2 DFF-Co-forest的分类效果 158
5.4.3 模糊分类策略的效果 162
5.4.4 算法性能比较 163
5.5 结语 166
第6章 胶囊网络的三元组强化学习及其征象分类方法 168
6.1 引言 168
6.2 相关工作 169
6.3 TriCaps-RL方法 171
6.3.1 三元胶囊网络 172
6.3.2 两阶段强化学习 175
6.4 实验与结果分析 180
6.4.1 实验设置 180
6.4.2 学习效果 181
6.4.3 TriCaps-RL方法的分类性能 184
6.4.4 TriCaps-RL与DQN性能对比 185
6.4.5 TriCaps-RL与其他二分类方法对比 188
6.5 结语 190
第7章 后记 192
7.1 工作总结 192
7.2 未来展望 194
参考文献 195
附录 231