目录
1 绪论 1
1.1 研究背景与意义 1
1.2 研究内容与研究框架 4
2 国内外研究现状 6
2.1 汇率预测研究 6
2.2 基于网络搜索数据的预测研究 22
2.3 基于情感分析的金融预测研究 27
2.4 本章小结 30
3 基于聚类的非线性集成学习的汇率预测方法 32
3.1 引言 32
3.2 基于聚类的非线性集成学习方法框架 34
3.3 基于SOM-KELM 非线性集成学习方法构建 36
3.4 实证研究 41
3.5 本章小结 55
4 基于分解—聚类—集成学习的汇率预测方法 56
4.1 引言 56
4.2 分解—聚类—集成学习方法框架 58
4.3 基于EEMD-LSSVR-K 的分解—聚类—集成学习方法构建 60
4.4 实证研究 64
4.5 本章小结 79
5 投资者关注度与汇率预测——基于集成深度学习方法 81
5.1 引言 81
5.2 基于B-SALS 集成深度学习方法框架 83
5.3 实证研究 89
5.4 本章小结 97
6 基于在线外汇新闻情感挖掘的汇率预测方法 99
6.1 引言 99
6.2 情感分析相关理论与技术 101
6.3 基于在线外汇新闻情感挖掘的汇率预测方法框架 106
6.4 实证研究 116
6.5 本章小结 125
7 基于多模态数据驱动综合集成方法论的汇率预测方法 127
7.1 引言 127
7.2 多模态数据驱动综合集成方法论 128
7.3 基于EELM 的多模态数据驱动综合集成汇率预测方法框架 130
7.4 实证研究 133
7.5 本章小结 141
参考文献 143