《锥优化的光滑牛顿法研究》系统研究几类锥优化问题的光滑函数和光滑牛顿法。全书共13章,主要内容包括一类下层为二阶锥规划的双层规划问题的二阶充分条件、二阶锥互补问题的一类单参数光滑函数的雅可比相容性、二阶锥互补问题的单参数光滑 Fischer-Burmeister 函数类的雅可比相容性、二阶锥互补问题的光滑广义 Fischer-Burmeister 函数的雅可比相容性、二阶锥互补问题的双参数效益函数类、二阶锥互补问题的新非精确光滑方法、欧几里得若当代数上的水平线性权互补问题、对称锥权互补问题的正则化非单调非精确光滑牛顿法、求解圆锥规划的非单调光滑牛顿法、圆锥规划的非单调线性搜索光滑牛顿法及圆锥互补问题的正则化非精确光滑牛顿法等。《锥优化的光滑牛顿法研究》可以作为数学及优化等相关专业高年级本科生、研究生的教材或参考书,也可供相关教师、科研人员参考。