本书以力学分析中的对称性和守恒律为中心,从基本概念出发,结合实际应用,系统地、深入浅出地介绍了对称性和守恒律的主要内容。本书首先由变分原理和Euler-Lagrange方程引出对称性和守恒律中常用的微分算子,作为后续分析的预备知识。后续内容主要分为三部分:第一部分详细介绍了微分方程(组)中Lie对称、Noether守恒律和Ibragimov守恒律的基本知识;第二部是第一部分的推广,研究了扰动微分方程(组)的近似Lie对称性、近似Noether守恒律和近似Ibragimov守恒律,此外还简要介绍了势对称和近似势对称;第三部分通过大量应用实例,介绍了对称性和守恒律在弹性力学、流体力学、一般力学和数学物理方程等领域中的应用。