《高等数学物理方法》内容包含了曲线论、曲面论、张量分析、变分法和积分方程的理论和应用背景。曲线论与曲面论中介绍了微分几何基础知识,并对于它们如何用于工程和物理学研究做了一定的分析。张量分析中,针对专业特点,讨论了笛卡儿张量和一般张量。为了让读者深刻了解场论知识,作者详细地介绍了张量场的理论和计算方法,这些内容拓展了场论深度和广度。变分法和积分方程内容的重点是它们的基础理论和如何用它们直接求解实际工作中会遇到的微分方程,特别对于用变分法和积分方程解初始问题和边值问题的直接解法,有详细的介绍。《高等数学物理方法》提供了大量的例题和习题,以供学生课前和课后练习。读者只要具有高等数学、线性代数和微分方程的基础知识就可以顺利地阅读《高等数学物理方法》。《高等数学物理方法》介绍的内容是本科阶段所学数学物理方法的继续,是工程和应用物理类高年级本科生和研究生在后续课程学习和科学研究中的难点。