本书主要介绍与数据分析有关的语法基础,针对性强,帮助读者快速入门,譬如在第2部分重点介绍了Python入门语法、特征以及数据分析所需要的一些基本语法。Python可以通过多个库、多种方法实现相同目的,如实现线性回归可以用sklearn、statsmodels等库,实现生存分析可以使用lifelines、pysurvival、statsmodels等库,并且存在很多代码不统一的情况,这会给初学者带来困惑。针对这个问题,本书主要使用Scipy库来实现假设检验,使用statsmodels库来拟合统计模型,并且尽量使用简洁的代码来完成数据分析,譬如在第7部分中介绍了利用Pandas库在同步完成数据清洗和统计图绘制,减少代码书写量,提高数据分析效率。本书的编写突出实用性,注重数据前期处理与医学统计分析相结合;按照资料类型介绍统计学方法,有利于读者在实际数据分析中快速查找对应的统计学方法;在介绍每种统等