本书深入全面地讲解了现代推荐算法,同时兼顾深度和广度,介绍了当下较前沿、先进的各类算法及其实践。本书从总览篇开始,介绍推荐系统的基本概念及工作环节。在模型篇中,除了梳理推荐系统的发展史,本书还重点讲解面向工业实践的选择及改进,为读者打下推荐系统的算法基础;进而带着读者进阶到前沿篇、难点篇,面对推荐系统中的各式问题,给出解决方案;后在决策篇中,从技术原理和用户心理出发,解释一些常见决策背后的依据,从而帮助读者从执行层面进阶到决策层面,建立大局观。本书力求用简洁易懂的语言说清核心原理,对已经有一定机器学习概念和数学基础的学生和相关领域的从业者非常友好,特别适合推荐系统、计算广告和搜索领域的从业者及学生拓展新知和项目实战