《几何基础》是数学大师希尔伯特的一部名著,首次发表于1899年,该书第一次给出了完备的欧几里得几何公理系统。全体公理按性质分为五组(即关联公理、次序公理、合同公理、平行公理和连续公理),他对它们之间的逻辑关系作了深刻的考察,精确地提出了公理系统的相容性、独立性与完备性要求。为解决独立性问题,他的典型方法是构作一个模型,不满足所论的公理,但却满足所有其他公理。采用这种途径可赋予非欧几何以严密的逻辑解释,同时开拓了建立其他新几何学的可能性。对于相容性问题,他的重大贡献是借助于解析几何而将欧氏几何的相容性归结为初等算术的相容性。上述工作的意义远超出了几何基础的范围,而使他成为现代公理化方法的奠基人。