本书通过基础理论和算法实践相结合,循序渐进地介绍了人工智能领域中的常见算法,并以围棋游戏作为媒介,全面、系统地介绍了人工智能算法的实现方法,并通过Keras和PyTorch框架实践人工智能算法中的深度强化学习内容。全书共10章,分别介绍围棋的基础知识、如何制作围棋软件、传统棋类智能算法、神经网络入门知识、如何实现围棋智能体程序、通用化围棋智能体程序、策略梯度算法、基于价值的深度学习网络(DQN)算法、ActorCritic算法、如何实践AlphaGo和AlphaZero等知识,书中的每个知识点都有相应的实现代码和实例。 本书主要面向广大从事数据分析、机器学习、数据挖掘或深度学习的专业人员,从事高等教育的专任教师,高等学校的在读学生及相关领域的广大科研人员。