本书提供了一种独特的方法来讲解Python编程入门,内容符合新的ACM/IEEECS和相关的计算课程倡议,以及由美国国家科学基金会赞助的数据科学本科课程。内容涵盖了新的主题和应用的覆盖面,模块化架构使教师能够方便地调整文本,适应课程需求。通过本书,你将学习:538个案例研究,471道练习题和项目,557道自我测验题。基于IPython和Jupyter Notebook的即时反馈。问题求解、算法开发、控制语句、函数等基础知识。列表、元组、字典、集合、Numpy数组、pandas Series和DataFrame。2D/3D的静态、动态和交互式可视化。字符串、文本文件、JSON序列化、CSV、异常。过程式、函数式和面向对象的程序设计方法。“数据科学入门”:基础统计、模拟、动画、随机变量、数据整理、回归。隐私、安全、伦理、可重现、透明。AI、大数据和云数据科学案例研究:NLP、Twitter数据挖掘、IBM Watson、机器学习、深度学习、计算机视觉、Hadoop、Spark、NoSQL、IoT。开源库:NumPy、pandas、Matplotlib、Seaborn、Folium、SciPy、NLTK、TextBlob、spaCy、Textatistic、Tweepy、Scikit-learn、Keras、PubNub等。