《开放环境下的度量学习研究》由南京大学人工智能学院副研究员叶翰嘉撰写,内容荣获2021年度CCF优秀博士学位论文奖。全书以模型在开放环境下输入、输出层面上面临的挑战为切入点,提出针对或利用度量学习特性的具体算法,从理论和应用等多个角度使度量学习的研究能够契合开放的环境。《开放环境下的度量学习研究》共七章:第1章 绪论,主要介绍了度量学习、开放环境的特点、开放环境的研究进展以及全书的概要。第2章 度量学习研究进展,首先介绍了监督学习和度量学习;然后讲解了三种度量学习的相关算法,包括全局度量学习方法、多度量学习方法、高效度量学习方法;*后介绍了开放环境下度量学习的研究思路。第3章 开放环境下度量学习的样本复杂度分析,首先展示了现有的度量学习理论结果,然后提出了基于函数性质的度量学习样本复杂度的改进方案,以及基于度量重用的度量学习样本复杂度的改进方案。第4章 基于度量学习和语义映射的异构模型修正,首先介绍了相关工作;其次介绍了基于度量语义映射的模型重用框架REFORM;然后介绍了实现模型重用框架REFORM的具体方法,包括自适应尺度的REFORM实现方法、学习变换的REFORM实现方法;*后展示了用于验证的实验流程和结果。第5章 多语义环境下的多度量学习方法探究,首先介绍了多度量学习方法的相关工作;其次介绍了考虑多语义的多度量学习方法;然后介绍了多度量自适应选择框架;*后展示了用于验证的实验流程和结果。第6章 考虑噪声影响的开放环境鲁棒度量学习,首先介绍了相关工作;然后介绍了考虑样本扰动的鲁棒度量学习DRIFT;*后展示了用于验证的实验流程和结果。第7章 总结与展望,总结了全书的研究内容,并对未来的研究方向和研究工作做出了展望。