针对阿尔茨海默病患者言语信息的早期诊断问题,本文通过提出问题、制定研究方案、方案实施及调整、评价反馈的方式展开研究。在制定、实施及调整研究方案的过程中,以前期研究为基础,结合文献检索及专家咨询方案,制定实验的实施方案。本文基于“治未病”思想和健康管理的理念,采用基于“波士顿失语症检测”图片描述任务中的患者言语信息建立AD智能辅助诊断模型,实验数据集包括语音信号和转录文本两种模态,本文的4、5、6章实验都是采用此方法建立的中文或英文公开数据集。基于此,本研究构建了语音和文本信息融合的阿尔兹海默病智能辅助诊断模型,为开发家庭监护系统奠定核心技术基础。本文主要研究内容如下: ,提出了一种“治未病”理念下AD智能辅助诊断和健康管理方案。第二,构建了一种基于语音和文本特征的AD智能辅助诊断模型。第三,采用迁移学习解决AD智能辅助诊断中的小样本问题。第四,提出一种AD智能辅助诊断的可解释性学习方法。第五,通过磁共振成像诊断AD。第六,基于“认知者健康云”家庭监护系统设计的临床小样本实证分析。