第1章绪论
1.1研究背景
1.1.1核电的发展与铀的开发利用
1.1.2含铀废水的产生及危害
1.1.3富集分离铀的意义
1.2富集分离铀的研究进展
1.2.1萃取法
1.2.2化学沉淀法
1.2.3离子交换法
1.2.4膜分离法
1.2.5吸附法
1.3碳点
1.3.1碳点的光学性质
1.3.2碳点的制备方法
1.3.3碳点在金属离子检测中的应用
1.3.4碳点复合材料的制备及应用
1.4常压等离子体电极
1.5研究意义和研究内容
第2章水热法制备氨基酸碳点及其对U(Ⅵ)的荧光响应
2.1引言
2.2实验部分
2.2.1实验试剂与仪器
2.2.2水热法制备氨基酸碳点
2.2.3碳点荧光量子产率的测定
2.2.4碳点对U(Ⅵ)和其他金属离子的荧光响应
2.2.5电位滴定法定量分析碳点表面的官能团
2.2.6电位滴定法分析GlyCDs和U(Ⅵ)的相互作用
2.3结果与讨论
2.3.1氨基酸碳点的制备和表征
2.3.2碳点对U(Ⅵ)的荧光响应性能探究
2.3.3碳点对其他金属离子的荧光响应性能探究
2.3.4碳点与U(Ⅵ)结合后的荧光淬灭机理
2.3.5电位滴定法研究碳点与U(Ⅵ)的相互作用
第3章等离子体法制备EDACDs及其对U(Ⅵ)的荧光响应
3.1引言
3.2实验部分
3.2.1实验试剂与仪器
3.2.2等离子体法制备EDACDs
3.2.3水热法制备HCDs
3.2.4EDACDs在检测U(Ⅵ)中的应用
3.3结果与讨论
3.3.1碳点的制备与表征
3.3.2反应机理的研究
3.3.3EDACDs在检测U(Ⅵ)中的应用
第4章等离子体法制备PDCDs及其对U(Ⅵ)的荧光响应
4.1引言
4.2实验部分
4.2.1实验试剂和仪器
4.2.2等离子体阳极制备PDCDs
4.2.3等离子体阴极辅助多巴胺聚合
4.2.4多巴胺聚合的机理研究
4.2.5PDCDs在检测U(Ⅵ)中的应用
4.3结果与讨论
4.3.1PDCDs的制备与表征
4.3.2多巴胺聚合机理的研究
4.3.3PDCDs在检测U(Ⅵ)中的应用
第5章CDs/SBA-NH2复合材料的制备及其在U(Ⅵ)吸附监测中的应用
5.1引言
5.2实验部分
5.2.1实验试剂与仪器
5.2.2SBA-NH2的制备
5.2.3CDs/SBA-NH2复合材料的制备
5.2.4U(Ⅵ)的吸附实验
5.2.5U(Ⅵ)吸附过程的在线监测
5.3结果与讨论
5.3.1CDs/SBA-NH2复合材料的表征
5.3.2复合材料对U(Ⅵ)的吸附和荧光响应
5.3.3吸附过程的在线监测和选择性评价
5.3.4复合材料的脱附性能
第6章结论与展望
6.1结论
6.2创新性
6.3展望
参考文献
在学期间发表的学术论文
附录A等离子体辅助多巴胺聚合及其在材料表面改性中的应用
致谢
Contents
Chapter 1Introduction
1.1Research Background
1.1.1Development of Nuclear Power and
Utilization of Uranium
1.1.2Generation and Hazards of
UraniumContaining Wastewater
1.1.3Significance of Uranium Enrichment and Separation
1.2Research Progress on Uranium Enrichment and Separation
1.2.1Extraction Method
1.2.2Chemical Precipitation Method
1.2.3Ion Exchange Method
1.2.4Membrane Separation Method
1.2.5Adsorption Method
1.3Carbon Dots
1.3.1Optical Properties of CDs
1.3.2Preparation Method of CDs
1.3.3Application of CDs in Metal Ion Detection
1.3.4Preparation and Application of CDs Composites
1.4Atmospheric Pressure Microplasma Electrode
1.5Significance and Content of the Research
Chapter 2Hydrothermal Preparation of Amino Acid Carbon Dots and
their Fluorescence Response to U(Ⅵ)
2.1Introduction
2.2Experimental Section
2.2.1Experimental Reagents and Apparatus
2.2.2Preparation of Amino Acid CDs With
Hydrothermal Method
2.2.3Fluorescence Quantum Yield Determination of CDs
2.2.4Fluorescence Response of CDs to
U(Ⅵ) and Other Metal Ions
2.2.5Quantification of Functional Groups on CDs
Surface by Potentiometric Titration
2.2.6Interaction of GlyCDs and U(Ⅵ) by
Potentiometric Titration
2.3Results and Discussion
2.3.1Preparation and Characterization
of Amino Acid CDs
2.3.2Investigation of the Fluorescence
Response Performance of CDs to U(Ⅵ)
2.3.3Investigation of the Fluorescence Response
Properties of CDs to Other Metal Ions
2.3.4Fluorescence Quenching Mechanism of
CDs After Binding to U(Ⅵ)
2.3.5The Interaction of CDs With U(Ⅵ)
by Potentiometric Titration
Chapter 3Preparation of EDACDs by Microplasma Method and
Their Fluorescence Response to U(Ⅵ)
3.1Introduction
3.2Experimental Section
3.2.1Experimental Reagents and Apparatus
3.2.2Preparation of EDACDs With Microplasma Method
3.2.3Preparation of HCDs by Hydrothermal Method
3.2.4Application of EDACDs in U(Ⅵ) Detection
3.3Results and Discussion
3.3.1Preparation and Characterization of CDs
3.3.2Study of the Reaction Mechanism
3.3.3Application of EDACDs in U(Ⅵ) Detection
Chapter 4Preparation of PDCDs by Microplasma Method and Their
Fluorescence Response to U(Ⅵ)
4.1Introduction
4.2Experimental Section
4.2.1Experimental Reagents and Apparatus
4.2.2Preparation of PDCDs With Microplasma Anode
4.2.3Dopamine Polymerization Assisted
With Microplasma Cathode
4.2.4Mechanistic Study of Dopamine Polymerization
4.2.5Application of PDCDs in U(Ⅵ) Detection
4.3Results and Discussion
4.3.1Preparation and Characterization of PDCDs
4.3.2Study of The Mechanism of
Dopamine Polymerization
4.3.3Application of PDCDs in U(Ⅵ) Detection
Chapter 5Preparation of CDs/SBANH2 Composites and Their Application
in U(Ⅵ) Adsorption Monitoring
5.1Introduction
5.2Experimental Section
5.2.1Experimental Reagents and Apparatus
5.2.2Preparation of SBANH2
5.2.3Preparation of CDs/SBANH2 Composites
5.2.4U(Ⅵ) Adsorption Experiments
5.2.5Online Monitoring of U(Ⅵ) Adsorption Process
5.3Results and Discussion
5.3.1Characterization of CDs/SBANH2 Composites
5.3.2Adsorption and Fluorescence Response
of Composites to U(Ⅵ)
5.3.3Online Monitoring and Selectivity
Evaluation of Adsorption Processes
5.3.4Desorption Properties of the Composites
Chapter 6Conclusion and Outlooks
6.1Conclusion
6.2Innovativeness
6.3Outlooks
References
Academic Papers and Research Achievements During the Ph.D. Period
Appendix AMicroplasmaAssisted Dopamine Polymerization and Its
Application in Material Surface Modification
Acknowledgements