第1章 绪论
1.1 引言
1.2 国内外相关研究现状
1.2.1 基于图论的无监督学习
1.2.2 基于图论的半监督学习
1.2.3 基于图论的监督学习
1.2.4 图构建方法
1.2.5 基于图论的学习方法拓展
1.2.6 研究现状评述
1.3 本书的主要工作
1.3.1 针对的问题和研究思路
1.3.2 研究内容及贡献
1.4 本书的组织结构
第2章
基于图论的学习框架模型
2.1 引言
2.2 基于图论的学习与两种假设
2.2.1 流形假设
2.2.2 聚类假设
2.3 图的划分准则
2.3.1 2 类划分
2.3.2 多类划分
2.4 基于图论的学习框架模型
2.4.1 问题描述与基本假设
2.4.2 约束条件教宽方法
2.4.3 模型分析 ·.
2.5 本章小结
第3章
基于图论的无监督学习
3.1 引言
3.2 基本问题描述与模型定义
3.2.1 基于图论的无监督学习问题描述
3.2.2 模型定义
3.3 基于图论的无监督学习算法框架
3.3.1 Logdet 正则化
3.3.2 学习框架
3.4 基于图论的无监督学习算法
3.4.1 迭代法
3.4.2 算法收敛性
3.4.3 复杂度分析
3.5 与以往工作之间的区别和联系
3.5.1 核k均值,谱聚类和对称非负矩阵分解
3.5.2 解的非负性,维度和稀疏性
3.5.3 权重矩阵
3.6 实验结果与分析
3.6.1 实验说明
3.6.2 示例
3.6.3 真实数据集
3.6.4 聚类结果
3.6.5 算法分析
3.6.6 CAC的变形
3.7 本章小结
第4章
基于图论的半监督学习
4.1 引言
4.2 基本问题描述与模型定义
……
第5章
基于图论的监督学习
第6章
基于图论的协同正则化学习
第7章
基于图论的多重正则化学习
第8章
基于图论的公共视频场景聚集性度量及分析
参考文献