注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术工业技术一般工业技术冲击爆炸荷载作用下的超高性能水泥基材料(英文版)

冲击爆炸荷载作用下的超高性能水泥基材料(英文版)

冲击爆炸荷载作用下的超高性能水泥基材料(英文版)

定 价:¥398.00

作 者: 方秦
出版社: 科学出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787030676986 出版时间: 2021-03-01 包装: 平装-胶订
开本: 16开 页数: 字数:  

内容简介

暂缺《冲击爆炸荷载作用下的超高性能水泥基材料(英文版)》简介

作者简介

暂缺《冲击爆炸荷载作用下的超高性能水泥基材料(英文版)》作者简介

图书目录

Static Mechanical Properties of UHPCC 1 
1.1 Introduction . 1 
1.2 Test Program 2 
1.2.1 Raw Materials and Mixture Proportions . 2 
1.2.2 Specimen Preparation and Curing 4 
1.3 Instrumentation and Loading Scheme . 5 
1.3.1 Cubic Compressive Test . 5 
1.3.2 Axial Compressive Test 6 
1.3.3 Direct Tensile Test 7 
1.3.4 Four­Point Flexural Test . 8 
1.3.5 Three­Point Flexural Test 9 
1.4 Test Results and Discussion 10 
1.4.1 Compression Test 10 
1.4.2 Direct Tension Test . 14 
1.4.3 Four­Point Flexure Test 17 
1.4.4 Three­Point Flexure Test . 21 
1.5 Summary . 27 
References 28 
2 Dynamic Compressive Mechanical Properties of UHPCC . 31 
2.1 Introduction . 31 
2.2 Specimen Preparation 32 
2.3 SHPB Test 33 
2.3.1 Test Device . 33 
2.3.2 Test Technique 34 
2.4 Test Results and Discussions . 37 
2.4.1 Stress Equilibrium 37 
2.4.2 Strain Rate Determination 38 
2.4.3 Dynamic Failure Pattern . 39 
2.4.4 Dynamic Stress–Strain Curve . 40 
2.4.5 Dynamic Increase Factor . 44 
2.4.6 Energy Absorption Capacity 48 
ix 
x Contents 
2.5 Visco­Elastic Damage Model 49 
2.5.1 Nonlinear Visco­Elastic Model 49 
2.5.2 Model Calibration and Validation 51 
2.6 Summary . 51 
References 53 
3 Dynamic Tensile Mechanical Properties of UHPCC 55 
3.1 Introduction . 55 
3.2 Specimen Preparation 56 
3.3 Dynamic Spalling Test . 57 
3.3.1 Test Device . 57 
3.3.2 Test Technique 58 
3.4 Test Results and Discussions . 61 
3.4.1 Dynamic Failure Patterns 61 
3.4.2 Dynamic Spalling Strength . 63 
3.4.3 Relations Between the Critical Time to Fracture 
and Dynamic Spalling Strength 66 
3.4.4 Dynamic Increase Factor . 67 
3.5 Summary . 70 
References 71 
4 Triaxial Compressive Behavior of UHPCC and Application 
in the Numerical Analyses of Projectile Impact 73 
4.1 Introduction . 73 
4.2 A Review of the Existing Works on Triaxial Behavior 
of Concrete 74 
4.3 Mixing Optimization of UHPCC and Triaxial Compression 
Test 76 
4.3.1 Compositions . 76 
4.3.2 Mixing Procedure 78 
4.3.3 Triaxial Compression Test . 79 
4.4 Results and Analysis . 80 
4.4.1 Failure Pattern . 80 
4.4.2 Stress–Strain Curve . 81 
4.4.3 Failure Criteria 85 
4.4.4 Toughness 90 
4.5 Applications in the Numerical Analyses 92 
4.5.1 Brief Introduction of HJC Constitutive Model . 92 
4.5.2 HJC Model Parameters for HSC . 94 
4.5.3 Validations 95 
4.6 Summary . 98 
References 101 
Contents xi 
5 Projectile Penetrations into Coarse Aggregated UHPCC 
Targets 105 
5.1 Introduction . 105 
5.2 Basalt Aggregated UHPCC Target 108 
5.2.1 Target 108 
5.2.2 Projectile . 109 
5.2.3 Test Setup 113 
5.2.4 Test Results . 114 
5.2.5 Discussions . 116 
5.3 Corundum Aggregated UHPCC Target 121 
5.3.1 Target and Projectile 121 
5.3.2 Test Results . 122 
5.3.3 Discussions . 127 
5.4 Numerical Simulations Based on 3D Mesoscopic Concrete 
Model 138 
5.4.1 3D Mesoscopic Concrete Model . 138 
5.4.2 Validations 148 
5.4.3 Impact Resistance of Different Aggregated UHPC . 153 
5.5 Summary . 158 
References 161 
6 Impact Resistance of Basalt Aggregated UHP­SFRC/Fabric 
Composite Panels Against Small Caliber Arm 163 
6.1 Introduction . 163 
6.2 Bullet Perforation Test . 165 
6.2.1 Bullet 165 
6.2.2 UHP­BASFRC Panels . 165 
6.2.3 Fabric Strengthening 167 
6.2.4 Test Setup 169 
6.3 Test Results . 170 
6.3.1 Damage of Target 170 
6.3.2 Dimension of Crater 174 
6.3.3 Perforation Limit 175 
6.3.4 Recovered Bullet 176 
6.3.5 Damage of Aluminum Plate 177 
6.4 Discussions . 177 
6.4.1 Crater Dimensions 177 
6.4.2 Terminal Ballistic Parameter . 179 
6.4.3 Fabric Effect 183 
6.5 Summary . 184 
References 184 
xii Contents 
7 Impact Resistance of Armsector Steel/Ceramic/UHPCC 
Layered Composite Targets Against 30CrMnSiNi2A Steel 
Projectiles 187 
7.1 Introduction . 187 
7.2 Impact Test on 10CrNi3MoV21A Armor Steel/SiC 
Ceramic/UHPCC Composite Targets and Numerical 
Simulations . 190 
7.2.1 Impact Test . 190 
7.2.2 Numerical Simulations 201 
7.3 Impact Test on NP450 Armor Steel/UHPCC and NP500 
Armor Steel/UHPCC Composite Targets and Numerical 
Simulations . 217 
7.3.1 Impact Test . 217 
7.3.2 Numerical Simulations 222 
7.4 Summary . 232 
References 233 
8 Response of UHPCC­FST Subjected to Low­Velocity Impact 237 
8.1 Introduction . 237 
8.2 Test Program 239 
8.2.1 UHPCC­FST Specimens . 239 
8.2.2 Axial Compression Test . 240 
8.2.3 Drop­Hammer Impact Test . 243 
8.3 Test Results and Discussions . 244 
8.3.1 Axial Compression 244 
8.3.2 Lateral Impact Resistance 245 
8.3.3 Impact Force–Time History 246 
8.3.4 Deflection­Time History . 247 
8.4 Calibration of K&C Model Parameters for UHPCC 248 
8.4.1 Brief Introduction of K&C Model 249 
8.4.2 Calibration 251 
8.5 Numerical Simulation 260 
8.5.1 Present Test . 260 
8.5.2 Yoo et al. (2015) Test 264 
8.6 Summary . 266 
References 267 
9 Dynamic Responses of Reinforced UHPCC Members Under 
Low­Velocity Lateral Impact 271 
9.1 Introduction . 271 
9.2 Test Program 274 
9.2.1 Specimen Fabrication . 274 
9.2.2 Drop­Hammer Impact Test . 275 
Contents xiii 
9.3 Test Results and Discussions . 277 
9.3.1 FailureMode 277 
9.3.2 Impact Force–Time History 280 
9.3.3 Deflection­Time History . 284 
9.3.4 Energy Dissipation 287 
9.4 Numerical Simulation 288 
9.4.1 FE Model . 288 
9.4.2 Calibration 289 
9.4.3 Comparisons of Numerical Results with Test Data . 300 
9.5 Further Validations 304 
9.5.1 Reinforced UHPCMembers 305 
9.5.2 UHPC­FSTMembers . 310 
9.6 Summary . 313 
References 315 
10 Residual Axial Capacity of UHPCC­FST Column Under 
Contact Explosion . 319 
10.1 Introduction . 319 
10.2 Review of the ExistingWorks 321 
10.3 UHPCC­FST Columns . 322 
10.3.1 Fabrications . 323 
10.3.2 Steel Tube 324 
10.3.3 UHPCC 325 
10.4 Field Contact Explosion Test . 325 
10.4.1 Test Setup 325 
10.4.2 Test Results . 327 
10.5 Axial Compression Test 329 
10.5.1 Test Setup 329 
10.5.2 Test Results . 330 
10.6 Numerical Simulation 336 
10.6.1 FE Model . 336 
10.6.2 Material Model 338 
10.6.3 Loading Scheme . 345 
10.7 Comparisons with Test Data . 346 
10.7.1 Damage and Failure Modes of Columns . 346 
10.7.2 Residual Axial Capacity and Failure Mode 
of Columns . 350 
10.8 Parametric Study 355 
10.8.1 Steel Tube Thickness and Strength . 355 
10.8.2 Core Concrete Strength and Cross­Sectional 
Diameter . 357 
10.8.3 Influence of Varied Parameters on Damage Index 362 
10.9 Summary . 363 
References 364 
xiv Contents 
11 Experimental and Numerical Study of UHPCC­FST Columns 
Subjected to Close­Range Explosion 369 
11.1 Introduction . 369 
11.2 Explosion Test on UHPCC­FST Column . 371 
11.2.1 Specimens 371 
11.2.2 Test Setup 373 
11.2.3 Test Results and Analyses 373 
11.3 Analytical Methods for Predicting the Dynamic Responses 
of UHPCC­FST Columns 377 
11.3.1 ALEMethod 377 
11.3.2 VelocityMethod . 381 
11.3.3 SDOFMethod 384 
11.3.4 Comparisons of Predictions by Different Methods . 388 
11.4 Further Numerical Analyses and Discussion . 389 
11.5 Summary . 392 
References 393 
12 Experimental Study on the Residual Seismic Resistance 
of UHPCC Filled Steel Tube (UHPCC­FST) After Contact 
Explosion . 397 
12.1 Introduction . 397 
12.2 UHPCC­FST Specimens . 399 
12.2.1 Steel Tube 399 
12.2.2 UHPCC 400 
12.2.3 Fabrications . 401 
12.3 Contact Explosion Test . 403 
12.3.1 Test Setup 403 
12.3.2 Test Results and Discussions . 404 
12.4 Low­Frequency Cyclic Loading Test 408 
12.4.1 Test Setup 408 
12.4.2 Test Results and Discussions . 409 
12.5 Assessment of Residual Seismic Resistance 
of the Post­blast Column . 423 
12.6 Summary . 426 
References 427 
13 Experimental and Numerical Studies on Dynamic Behavior 
of Reinforced UHPCC Panel Under Medium­Range 
Explosions 431 
13.1 Introduction . 431 
13.2 Review of the ExistingWork . 432 
13.3 Field Blast Test . 435 
13.3.1 Specimen . 435 
13.3.2 Test Setup 436 
13.3.3 Test Results and Discussions . 439 
Contents xv 
13.4 Numerical Simulation 453 
13.4.1 FE Model . 453 
13.4.2 Material Model of UHPCC . 454 
13.4.3 Material Model of NSC 463 
13.4.4 Material Models for Rebar and Support . 463 
13.5 Comparisons of Numerical Results with Test Data . 464 
13.5.1 Overpressures­Time History 464 
13.5.2 Deflection­Time History . 466 
13.5.3 Post­blast Damage 466 
13.6 Summary . 468 
References 470 
14 Constitutive Modelling of UHPCC Material Under Impact 
and Blast Loadings 475 
14.1 Introduction . 475 
14.2 UHPCC Material Model 478 
14.2.1 Brief Introduction of the Original Kong­Fang 
Concrete Model . 478 
14.2.2 New Tensile Damage Model 480 
14.2.3 Parameter Calibration . 484 
14.3 Single Element Tests . 489 
14.3.1 Unconfined Uniaxial Tests . 489 
14.3.2 Triaxial Compression Test . 490 
14.4 Experimental Validation 491 
14.4.1 UHPCC­FST Column Subjected to Low Speed 
Impact . 492 
14.4.2 UHPCC­FST Column Subjected to Near 
Explosion 495 
14.4.3 Reinforced UHPCC Slab Subjected to Blast 
Loading 498 
14.5 Summary . 500 
References 501 

本目录推荐