为了深入实施制造强国战略,我国正加速推动物联网、大数据、人工智能、云计算与制造业的深度融合,促进制造业向数字化、网络化和智能化转型升级。复杂系统健康监测是其中的关键环节之一。随着数据积聚、算法革新与算力提升,以深度学习为代表的新一代人工智能技术不断取得突破性发展,为复杂系统健康监测技术突破提供新的途径。本书结合作者团队的**研究成果,论述复杂系统健康监测的内涵、技术体系、研究现状和技术难点,总结卷积神经网络、循环神经网络、深度强化学习和深度迁移学习等深度学习的理论方法与框架,详细介绍9种不同的深度学习模型在复杂系统健康监测中的应用,并结合具体的应用案例进行展示。