致学生 1
致指导教师 6
第Ⅰ部分 谜、隐喻及模型
第1章 预备知识 3
§1.1 热 3
1.1.1 热是一种能量形式 3
1.1.2 热概念简史 5
1.1.3 预览:自由能的概念 7
§1.2 生命如何产生有序 9
1.2.1 生物有序之谜 9
1.2.2 自由能转换的范例:渗透流 11
1.2.3 预览:作为信息的无序 13
§1.3 题外话:广告、哲学与语用学 14
§1.4 如何在考试中表现得更好(以及如何发现新的物理定律) 16
1.4.1 多数物理量带有量纲 16
1.4.2 量纲分析可以帮助你捕捉错误和回忆定义 18
1.4.3 量纲分析还可以帮助你构想假说 19
1.4.4 单位和作图法 20
1.4.5 涉及通量和密度的一些符号约定 21
§1.5 物理和化学中的其他关键思想 21
1.5.1 分子是很小的 21
1.5.2 分子是原子的特定空间排布 23
1.5.3 分子有明确定义的内能 24
1.5.4 低密度气体遵从一条普适定律 25
小结 26
拓展 28
习题 29
第2章 细胞内部结构一览 33
§2.1 细胞生理学 35
2.1.1 内部大体解剖 37
2.1.2 外部大体解剖 40
§2.2 分子类别清单 42
2.2.1 小分子 42
2.2.2 中等大小的分子 44
2.2.3 大分子 45
2.2.4 大分子组装体 48
§2.3 跨越鸿沟:分子器件 50
2.3.1 质膜 50
2.3.2 分子马达 51
2.3.3 酶和调节蛋白 52
2.3.4 细胞内的总信息流 53
小结 55
拓展 57
习题 58
第Ⅱ部分 扩散、耗散及驱动
第3章 分子的舞蹈 63
§3.1 生活中的概率 63
3.1.1 离散分布 64
3.1.2 连续分布 64
3.1.3 平均值和方差 67
3.1.4 加法原理与乘法原理 68
§3.2 理想气体定律解密 71
3.2.1 温度反映了热运动的平均动能 71
3.2.2 分子速度的总体分布是实验可测的 75
3.2.3 玻尔兹曼分布 75
3.2.4 活化势垒控制反应速率 78
3.2.5 趋向平衡的弛豫 79
§3.3 题外话:遗传现象的启示 81
3.3.1 亚里士多德介入争论 81
3.3.2 鉴定遗传信息的物质载体 81
3.3.3 薛定谔的总结:遗传信息有对应的物质结构 87
小结 91
拓展 93
习题 94
第4章 无规行走、摩擦与扩散 98
§4.1 布朗运动 99
4.1.1 布朗运动简史 99
4.1.2 无规行走导致扩散 100
4.1.3 扩散定律与模型无关 105
4.1.4 摩擦与扩散之间存在定量联系 107
§4.2 题外话:爱因斯坦所扮演的角色 109
§4.3 其他无规行走 110
4.3.1 高分子构象 110
4.3.2 展望:华尔街里的无规行走 114
§4.4 关于扩散的更多知识 115
4.4.1 扩散支配着亚细胞世界 115
4.4.2 扩散行为可用简单方程刻画 116
4.4.3 随机过程的精确统计预测 119
§4.5 函数、导数与“地毯下的蛇” 119
4.5.1 函数能描绘定量关系的细节 119
4.5.2 两变量函数可用地形图直观显示 121
§4.6 扩散概念用于考察生物学 122
4.6.1 人造膜的通透性源于扩散 122
4.6.2 扩散为细菌代谢设定了一个基本限制 124
4.6.3 能斯特关系设定了膜电势的量级 125
4.6.4 溶液电阻反映了摩擦耗散 128
4.6.5 从单点开始的扩散产生不断延展的高斯型浓度分布 128
小结 130
拓展 133
习题 139
第5章 慢航道中的生命:小雷诺数世界 148
§5.1 流体中的摩擦 148
5.1.1 足够小的粒子能够永久悬浮 148
5.1.2 沉降速率取决于溶剂黏度 150
5.1.3 黏性液体难以混合 151
§5.2 小雷诺数 153
5.2.1 摩擦支配的范围由临界力界定 153
5.2.2 摩擦和惯性的相对重要程度由雷诺数定量刻画 156
5.2.3 动力学定律的时间反演特征反映了它的耗散性 158
§5.3 对生物学的考察 161
5.3.1 泳动与泵动 161
5.3.2 搅动或是不搅动 165
5.3.3 觅食、攻击与逃生 166
5.3.4 脉管网络 167
5.3.5 DNA复制叉上的黏性阻力 169
§5.4 题外话:物理定律的特性 171
小结 172
拓展 174
习题 177
第6章 熵、温度与自由能 184
§6.1 如何度量无序 184
§6.2 熵 187
6.2.1 统计假说 187
6.2.2 熵是一个常量与最大无序度的乘积 189
§6.3 温度 190
6.3.1 热流是系统趋于最大无序的后果 190
6.3.2 温度是系统平衡态的统计性质 192
§6.4 热力学第二定律 194
6.4.1 约束去除时熵自发增加 194
6.4.2 三条注释 197
§6.5 开放系统 198
6.5.1 子系统的自由能反映了熵和能量的竞争 198
6.5.2 熵力可以表达为自由能的导数 200
6.5.3 在小的受控步骤中自由能转换效率更高 201
6.5.4 作为热机的生物圈 203
§6.6 微观系统 204
6.6.1 由统计假说可得到玻尔兹曼分布 204
6.6.2 玻尔兹曼分布的动力学解释 206
6.6.3 最小自由能原则也适用于微观子系统 209
6.6.4 自由能决定复杂二态系统的能态分布 210
§6.7 题外话:“作为二态系统的RNA折叠” 211
小结 214
拓展 217
习题 223
第7章 细胞内的熵力 230
§7.1 熵力的微观解释 230
7.1.1 定容方法 231
7.1.2 定压方法 231
§7.2 渗透压 233
7.2.1 平衡渗透压遵循理想气体定律 233
7.2.2 渗透压使大分子之间产生排空力 235
§7.3 超越平衡:渗透流 238
7.3.1 对布朗运动“整流”导致渗透力的产生 238
7.3.2 渗透流与力致渗透定量相关 242
§7.4 溶液中的静电力 243
7.4.1 静电作用对细胞的正常功能至关重要 243
7.4.2 高斯定律 246
7.4.3 带电表面外包围着可与之中和的离子云 247
7.4.4 同荷表面相斥源于所携离子云的压缩 251
7.4.5 平衡离子释放导致异荷表面相吸 254
§7.5 水的特殊性质 254
7.5.1 液态水含有松散的氢键网络 254
7.5.2 氢键网络影响小分子在水中的可溶性 257
7.5.3 水使非极性物体之间产生熵吸引 260
小结 261
拓展 263
习题 269
第8章 化学力和自组装 276
§8.1 化学势 276
8.1.1 μ描述粒子的可获得性 276
8.1.2 玻尔兹曼分布可推广到含粒子交换的情况 279
§8.2 化学反应 280
8.2.1 化学力均衡导致化学平衡 280
8.2.2 Δ犌可作为化学反应方向的统一判据 282
8.2.3 复杂平衡的动力学解释 286
8.2.4 原生汤处于化学失衡状态 287
§8.3 解离 287
8.3.1 离子键和部分离子键容易在水中解离 288
8.3.2 酸和碱的强度反映其解离平衡常数 288
8.3.3 蛋白质带电状态随环境改变 290
8.3.4 电泳可灵敏地测量蛋白质组成 291
§8.4 两亲分子的自组装 293
8.4.1 两亲分子降低水 油界面的张力从而形成乳状液 293
8.4.2 临界浓度时发生的胶束自组装 295
§8.5 题外话:关于数据拟合 298
§8.6 细胞内的自组装 299
8.6.1 双层膜可由双尾两亲分子自组装而成 299
8.6.2 展望:大分子的折叠和聚集 303
8.6.3 厨房之旅 305
小结 307
拓展 309
习题 311
第Ⅲ部分 分子、机器、工作机制
第9章 大分子的协同变构 317
§9.1 高分子的弹性模型 317
9.1.1 为什么物理学能有效描述物质世界 318
9.1.2 细长杆的弹性可用四个唯象参量刻画 320
9.1.3 高分子以熵力抵抗拉伸 322
§9.2 单个大分子的拉伸 325
9.2.1 DNA单分子的力 伸长曲线可以测定 325
9.2.2 二态模型可定性解释小拉伸力情况下DNA的行为 326
§9.3 本征值速成 328
9.3.1 矩阵和本征值 328
9.3.2 矩阵乘法 331
§9.4 协同性 332
9.4.1 转移矩阵方法可以准确处理弯曲协同性 332
9.4.2 在中等大小外力作用下DNA分子展示出线性拉伸弹性 335
9.4.3 在高维系统中协同作用可导致无限急遽的相变 335
§9.5 热、化学或力过程中的开关行为 336
9.5.1 螺旋 线团转变可以用偏振光观察 337
9.5.2 螺旋 线团转变可用三个唯象参量描述 339
9.5.3 螺旋 线团转变中相关量的计算 341
9.5.4 DNA也呈现出协同“熔化” 345
9.5.5 机械外力可以诱导大分子发生协同结构转变 346
§9.6 别构效应 347
9.6.1 血红蛋白与四个氧分子协同结合 347
9.6.2 别构效应常涉及分子亚基的相对运动 349
9.6.3 蛋白分子的“天然态”是大量子态的连续分布 350
小结 352
拓展 354
习题 364
第10章 酶与分子机器 370
§10.1 细胞内分子器件概述 371
10.1.1 术语 371
10.1.2 酶的饱和动力学 371
10.1.3 真核细胞都拥有循环马达 372
10.1.4 耗尽型机器参与细胞移动和结构排布 375
§10.2 纯力学机器 377
10.2.1 宏观机器可由能量面描述 377
10.2.2 微观机器能跨越势垒 380
10.2.3 应用斯莫卢霍夫斯基方程计算微观机器的工作速率 382
§10.3 力学原理的分子实现 388
10.3.1 三个观点 388
10.3.2 反应坐标为化学过程提供了方便简化的描述 389
10.3.3 酶与过渡态结合从而催化反应 391
10.3.4 力学化学马达的运动可视为二维能量面上的无规行走 395
§10.4 真实酶及分子机器的动力学 396
10.4.1 米 曼规则可描述简单酶的动力学 397
10.4.2 酶活性的调节 400
10.4.3 双头驱动蛋白可作为紧耦联的理想棘轮 400
10.4.4 分子马达在无紧耦联或发力冲程的情况下仍能移动 408
§10.5 展望:分子马达种种 413
小结 414
拓展 417
习题 424
第11章 嵌膜机器 434
§11.1 电渗效应 434
11.1.1 “古老”的历史 434
11.1.2 离子浓度差产生能斯特势 435
11.1.3 唐南平衡产生静息膜电位 438
§11.2 离子泵送 440
11.2.1 真核细胞膜电位的观测值暗示这些细胞远离唐南平衡 440
11.2.2 欧姆电导假设 442
11.2.3 主动泵送既维持了定态膜电位又避免了巨大渗透压 444
§11.3 作为工厂的线粒体 448
11.3.1 母线和传动轴将能量分配到工厂各处 449
11.3.2 呼吸作用相关的生化知识 450
11.3.3 线粒体内膜在化学渗透机制中用作汇流母线 452
11.3.4 化学渗透机制的验证 454
11.3.5 展望:细胞在其他场合下也利用化学渗透耦联 457
§11.4 题外话:“给鞭毛马达加电” 458
小结 459
拓展 461
习题 463
第12章 神经冲动 467
§12.1 关于神经冲动的问题 468
12.1.1 动作电位的现象学 468
12.1.2 细胞膜可视为电路网络 471
12.1.3 从膜的欧姆电导行为到无行波解的线性电缆方程 475
§12.2 动作电位的简化模型 479
12.2.1 难题 479
12.2.2 力学类比 479
12.2.3 动作电位简史 481
12.2.4 动作电位随时间变化的过程提示了电压门控假说 483
12.2.5 从电压门控机制到具有行波解的电缆方程 487
§12.3 霍奇金 赫胥黎机制的完整形式及其分子基础 491
12.3.1 不同离子电导在膜电位改变时各自遵循一个特征时间过程 491
12.3.2 膜片钳技术可用于研究单离子通道行为 494
§12.4 神经、肌肉与突触 501
12.4.1 神经细胞被狭窄的突触隔开 502
12.4.2 神经肌肉接头 503
12.4.3 展望:神经系统的计算 504
小结 505
拓展 508
习题 509
致谢 514
后记 517
译后记 518
附录犃 符号及单位 520
附录犅 数值 528
引用说明 533
参考文献 536
索引 551