第一章 线性赋范空间内的最佳逼近问题(Ⅰ)
1 基本概念
2 线性赋范空间内最佳逼近元的存在定理
3 线性赋范空间内最佳逼近元的唯一性定理
4 C(Q)空间内的Chebyshev 最佳唯一致逼近
5 Chebyshev 逼近的进一步结果的综述
6 注和参考资料
第二章 线性赋范空间内的最佳逼近问题(Ⅱ)
1 某些泛函分析的知识
2 最佳逼近的对偶定理
3 几何解释
4 L(Q,∑,μ)空间内的最佳平均逼近问题
5 LP(Q,∑,μ)(1<p<+∞)内的最佳逼近问题
6 注和参考资料
第三章 最佳逼近的定量理论
1 Weierstrass-Stone 定理
2 连续模和光滑模
3 周期函数类上最佳逼近的正逆定理
4 有限区间上的连续函数借助代数多项式的逼近
5 注和参考资料
第四章 卷积类上的逼近
1 周期函数的卷积
2 周期卷积类借助T2n-1的最佳逼近
3 周期卷积类借助T2a-1的最佳线性逼近
4 周期卷积类借助线性卷积算子的逼近
5 Wrx,Wrx(x=L2π∞,L2π)借助卷积算子的一致逼近与平均逼近
6 K*Hω0(M),K*Hω0(L)类上的线性逼近
7 周期卷积算子的饱和问题
8 饱和类的刻画
9 注和参考资料
第五章 线性赋范空间内点集的宽度
1 几种类型的宽度定义及其基本性质
2 宽度的对偶定理
3 球的宽度定理
4 n-K宽度的极子空间
5 Hilbert空间内点集的宽度
6 C(Q)空间内点集的宽度
7 L(Q)空间内点集的宽度
8 由线性积分算子确定的函数类在L?空间内宽度的下方估计法
9 注和参考资料
第六章 &-样条的极值性质
1 广义Bernoulli函数及其最佳平均逼近
2 Kolmogorov型比较定理和&-k型不等式
3 单边限制条件下的Kolmogorov型比较定理和&-k型不等式
4 &-k不等式和逼近论极值问题的联系
5 注和参考资料
重要符号表