Preface
Acknowledgements
Author biographies
1 Introduction to homogenization
1.1 The notion of a homogenized composite material
1.2 Salient features of homogenization formalisms
1.3 A brief history of homogenization formalisms
1.4 Organization of this book
Bibliography
2 Constitutive dyadics
2.1 Microscopic and macroscopic electromagnetic perspectives
2.2 Constitutive relations
2.3 Frequency domain
2.4 A compact representation
2.5 Dissipative and nondissipative materials
2.6 Linear materials
2.6.1 Isotropic and bi-isotropic materials
2.6.2 Anisotropic and bianisotropic materials
2.7 Nonlinear materials
Bibliography
3 Depolarization dyadics
3.1 Dyadic Green functions
3.1.1 Defining properties
3.1.2 Spectral representation
3.2 Depolarization dyadics
3.2.1 Ellipsoidal region
3.2.2 Spherical region
3.2.3 Cylindrical region
3.3 Polarizability density
Bibliography
4 Homogenization formalisms: linear materials
4.1 Preliminaries
4.1.1 Constituent materials
4.1.2 Homogenized composite materials
4.2 Maxwell Garnett formalism
4.2.1 Formulas
4.2.2 Inverse formalism
4.2.3 Incremental and differential formalisms
4.3 Bruggeman formalism
4.3.1 Formulas
4.3.2 Inverse formalism
4.4 Strong-property-fluctuation theory
4.4.1 Introduction
4.4.2 Lowest-order approximation
4.4.3 Second-order approximation
4.4.4 Third-order approximation
4.5 Extended formalisms
4.5.1 Generalities
4.5.2 An example: isotropic dielectric composite material
4.6 Applications
4.6.1 Realization of anisotropy and bianisotropy
4.6.2 Disk-shaped and needle-shaped particles
4.6.3 Plane-wave phenomena
4.6.4 Inverse homogenization
4.7 Limitations
Bibliography
5 Homogenization formalisms: nonlinear materials
5.1 Preliminaries
5.2 Maxwell Garnett formalism
5.3 Strong-property-fluctuation theory
5.3.1 Isotropic dielectric composite materials
5.3.2 Isotropic chiral composite materials
5.3.3 Anisotropic dielectric composite materials
5.4 Nonlinearity enhancement via homogenization
Bibliography
6 Epilogue
Bibliography
Appendix A 3×3 Dyadics
编辑手记