本书基于Python 3.7版本软件编写,全书围绕推荐模型的开发实践,为读者重点展示了各种不同类型的推荐模型开发过程及其在多种业务场景下的应用。本书分为四个部分,第一部分包含推荐系统的前世今生及其涉及的基础数学知识,简单介绍了推荐系统的发展过程及从事推荐模型研发所需要的数学知识;第二部分重点介绍不同类型的推荐算法在多种应用场景下的开发实践,包括协同过滤、矩阵分解、Logistic回归、决策树、集成学习、因子分解与深度学习模型;第三部分介绍了推荐系统的冷启动问题及效果评估方法;第四部分通过行业真实案例,比如广告点击率预测、金融产品精准营销、电影推荐、音乐推荐、产品交叉销售等,深入浅出、循序渐进的介绍了推荐模型开发的全过程。本书内容精炼、案例丰富,实践性极强,可快速学习上手实践,值得一读,特别适合在企业中从事推荐模型开发、数据分析挖掘、机器学习研发等工作的人员使用,同样适合想从事数据挖掘工作的各大中专院校的学生与教师,以及其他对推荐系统领域有兴趣爱好的各类人员使用