定 价:¥69.00
作 者: | 白浩 |
出版社: | 线装书局 |
丛编项: | |
标 签: | 暂缺 |
ISBN: | 9787512047532 | 出版时间: | 2022-12-01 | 包装: | 平装 |
开本: | 16开 | 页数: | 字数: |
第一章 绪论 / 1
1.1 选题背景 / 1
1.2 研究问题 / 4
1.3 本书工作 / 6
第二章 国内外研究现状及分析 / 10
2.1 单字提取 / 11
2.1.1 相邻笔画时间和空间距离的方法 / 11
2.1.2 语境方法 / 12
2.1.3 机器学习方法 / 13
2.2 汉字识别 / 14
2.2.1 结构方法 / 15
2.2.2 特征提取方法 / 16
2.2.3 深度学习方法 / 17
2.3 笔画匹配 / 19
2.3.1 笔画模板方法 / 19
2.3.2 图匹配方法 / 20
2.3.3 笔段匹配方法 / 21
2.4 书写错误提取 / 22
2.4.1 评价对象 / 22
2.4.2 错误提取方法 / 25
2.4.3 评价反馈方式 / 29
2.5 本章小结 / 31
第三章 基于多层次信息的单字提取方法 32
3.1 递归分割方法 / 33
3.1.1 基于初始分割结果的数据分析 / 34
3.1.2 递归分割算法 / 36
3.2 面向错误分类的分割方法 / 38
3.2.1 错误分类归纳 / 39
3.2.2 面向欠分割的分割方法 / 41
3.2.3 面向过分割的分割方法 / 47
3.2.4 性能测试 / 51
3.3 基于单字提取结果的自适应可视化方法 / 52
3.3.1 可视化方法进展 / 52
3.3.2 基于重叠的自适应可视化方法 / 55
3.3.3 基于可信度的可视化方法 / 61
3.4 针对单字提取结果的交互式校正方法 / 65
3.4.1 基于可视化结果的交互式校正 / 66
3.4.2 基于用户意图的交互式校正 / 69
3.4.3 性能测试 / 71
3.5 本章小结 / 73
第四章 基于书写层次模型的手写汉字识别方法 / 74
4.1 基于笔画名称和整字结构的识别方法 / 75
4.2 部件结构的分类 / 77
4.3 基于 HMM 的笔画识别 / 78
4.3.1 HMM 分类器的训练 / 79
4.3.2 汉字中笔画的识别 / 81
4.3.3 基于笔画名称序列的筛选 / 84
4.4 实验结果 / 85
4.4.1 根据汉字笔画数分类 / 86
4.4.2 根据不同部件结构分类 / 88
4.4.3 根据笔画错误类型分类 / 89
4.5 基于 HCRF 的笔画识别的改进方法 / 91
4.5.1 HCRF 分类器的训练 / 92
4.5.2 HCRF 分类器的实验结果 / 92
4.6 本章小结 / 94
第五章 基于遗传算法的笔画匹配方法 / 95
5.1 遗传算法的基本设置 / 96
5.2 自适应编码方法 / 98
5.2.1 序列编码 / 98
5.2.2 最大值编码 / 99
5.2.3 子笔画编码 / 101
5.3 基于结构和书写特征的适应度函数 / 105
5.3.1 全局特征 / 105
5.3.2 局部特征 / 106
5.3.3 适应度函数的评价 / 108
5.4 实验结果 / 109
5.4.1 根据笔画数分类 / 109
5.4.2 根据部件结构分类 / 111
5.4.3 根据笔画错误类型分类 / 112
5.5 本章小结 / 113
第六章 针对笔画匹配结果的可视化及人机交互校正方法 / 115
6.1 多感知层次的可视化方法 / 116
6.1.1 基于颜色感知层次的表示 / 117
6.1.2 采用图形符号的笔向表示 / 120
6.1.3 采用数字序号的笔顺表示 / 121
6.2 标记表示方法 / 122
6.2.1 标记列表的定义 / 122
6.2.2 标记类型的表示 / 124
6.3 基于标记列表的校正方法 / 125
6.4 实验结果 / 132
6.4.1 可视化 / 132
6.4.2 交互校正 / 134
6.5 本章小结 / 135
第七章 基于标记列表的笔画错误提取方法 / 137
7.1 标记列表与笔画错误的对应关系 / 137
7.2 自适应错误提取 / 146
7.3 实验结果 / 154
7.4 本章小结 / 155
第八章 数据测试与结果分析 / 157
8.1 数据采集 / 157
8.2 数据测试 / 161
第九章 结 论 / 173
附录 1:摹写、听写纸张样图 / 177
附录 2:22名学生实验数据样图 / 179
参考文献?201