第 1章 Excel和数据挖掘 1
1.1 为什么选择Excel 1
1.2 Excel 预备技巧 4
1.2.1 公式 5
1.2.2 自动填充或复制 5
1.2.3 绝对引用 7
1.2.4 选择性粘贴和值粘贴 9
1.2.5 IF 函数 11
1.3 复习要点 17
第 2章 线性回归 18
2.1 一般性理解 18
2.2 通过Excel学习线性回归 22
2.3 通过Excel学习多元线性回归 25
2.4 复习要点 28
第3章 k均值聚类 29
3.1 一般性理解 29
3.2 通过Excel学习k均值聚类 30
3.3 复习要点 39
第4章 线性判别分析 40
4.1 一般性理解 40
4.2 规划求解 42
4.3 通过Excel学习线性判别分析 44
4.4 复习要点 53
第5章 交叉验证和ROC曲线分析 54
5.1 对交叉验证的一般性理解 54
5.2 通过Excel学习交叉验证 55
5.3 对ROC曲线分析的一般性理解 59
5.4 通过Excel学习ROC曲线分析 60
5.5 复习要点 65
第6章 logistic回归 66
6.1 一般性理解 66
6.2 通过Excel 学习logistic 回归 67
6.3 复习要点 73
第7章 k最近邻 74
7.1 一般性理解 74
7.2 通过Excel 学习k 最近邻 75
7.2.1 实验1 75
7.2.2 实验2 78
7.2.3 实验3 82
7.2.4 实验4 85
7.3 复习要点 87
第8章 朴素贝叶斯分类 88
8.1 一般性理解 88
8.2 通过Excel 学习朴素贝叶斯分类 90
8.2.1 练习1 91
8.2.2 练习2 94
8.3 复习要点 100
第9章 决策树 101
9.1 一般性理解 102
9.2 通过Excel 学习决策树 105
9.2.1 开始学习 105
9.2.2 更好的方法 115
9.2.3 应用模型 118
9.3 复习要点 120
第 10章 关联分析 121
10.1 一般性理解 122
10.2 通过Excel 学习关联分析 124
10.3 复习要点 131
第 11章 人工神经网络 132
11.1 一般性理解 132
11.2 通过Excel学习人工神经网络 134
11.2.1 实验1 134
11.2.2 实验2 143
11.3 复习要点 152
第 12章 文本挖掘 153
12.1 一般性理解 153
12.2 通过Excel学习文本挖掘 155
12.3 复习要点 168
第 13章 后记 169