随着人工智能技术的广泛应用,网络智能化近年来受到广泛的关注,已经成为下一代移动通信与未来网络的重要技术。阿尔法围棋(AlphaGo)之后,深度强化学习不断推陈出新,为网络中的决策问题提供了有效的潜在解决方案。本书系统介绍了网络智能化中深度强化学习的基本理论、算法及应用场景。全书共8章,针对互联网、移动通信网、边缘网络、数据中心等典型网络,阐述了网络管理、网络控制、任务调度等决策需求,深入论述了深度强化学习的模型构建与应用技术。第1章介绍了网络智能的需求与挑战;第2章介绍了先进的深度强化学习模型与方法;第3~6章论述了无线接入优化、网络管理、网络控制与任务调度等普遍网络管控任务中,深度强化学习技术的应用方法;第7章和第8章论述了深度强化学习在流媒体控制以及自组织网络等典型场景中的新研究进展。 本书可为高等院校计算机和通信相关专业的本科生、研究生提供参考,也可供对网络智能化与深度强化学习领域感兴趣的研究人员和工程技术人员参考。