本书的内容按当前理工院校同名课程体系展开,涵盖概率论和数理统计的主要课题。全书共分为8章:前4章系统介绍概率论的课题,内容包括随机事件及其概率、随机变量及其分布、随机向量、随机变量的数字特征,为后4章讨论进行统计推断的数理统计方法构建一个明晰且严格的语境。后4章的数理统计内容包括数理统计的基本概念、参数估计、假设检验、方差分析和线性回归,形成统计推断的基本结构。本书选择Python的科学计算应用包,包括用于快速数组处理的numpy、用于统计计算的scipy.stats、用于积分计算的scipy.integrate和用于绘制2D图形的matplotlib等作为计算工具,对书中每一节讨论的概率统计的计算问题,都给出详尽的Python解法。