大约在一百年前,电气化改变了交通运输行业、制造业、医疗行业、通信行业,如今AI带来了同样巨大的改变。AI的各个分支中发展为迅速的方向之一就是深度学习。本书主要涉及以下内容:第1部分是神经网络的基础,学习如何建立神经网络,以及如何在数据上面训练它们。第2部分进行深度学习方面的实践,学习如何构建神经网络与超参数调试、正则化以及一些高级优化算法。第3部分学习卷积神经网络(CNN),以及如何搭建模型、有哪些经典模型。它经常被用于图像领域,此外目标检测、风格迁移等应用也将涉及。后在第4部分学习序列模型,以及如何将它们应用于自然语言处理等任务。序列模型讲到的算法有循环神经网络(RNN)、长短期记忆网络(LSTM)、注意力机制。通过以上内容的学习,读者可以入门深度学习领域并打下扎实基础,为后续了解和探索人工智能前沿科技做知识储备。本书配有电子课件,需要配套资源的教师可登录机械工业出版社教育服务网www.cmpedu.com免费注册后下载。