目 录
译者序
前言
给学生的注释
关于作者
第1章 线性代数中的线性方程组 1
介绍性实例 经济学与工程中的线性模型 1
1.1 线性方程组 2
1.2 行化简与阶梯形矩阵 12
1.3 向量方程 24
1.4 矩阵方程Ax=b 36
1.5 线性方程组的解集 44
1.6 线性方程组的应用 52
1.7 向量的线性相关性 58
1.8 线性变换简介 65
1.9 线性变换的矩阵 74
1.10 商业、科学和工程中的线性模型 84
课题研究 92
补充习题 93
第2章 矩阵代数 96
介绍性实例 飞机设计中的计算机模型 96
2.1 矩阵运算 97
2.2 矩阵的逆 109
2.3 可逆矩阵的特征 117
2.4 分块矩阵 122
2.5 矩阵分解 129
2.6 列昂惕夫投入-产出模型 137
2.7 在计算机图形学中的应用 142
2.8 ?n的子空间 151
2.9 维数与秩 159
课题研究 165
补充习题 166
第3章 行列式 168
介绍性实例 称钻石 168
3.1 行列式简介 169
3.2 行列式的性质 176
3.3 克拉默法则、体积和线性变换 184
课题研究 193
补充习题 193
第4章 向量空间 195
介绍性实例 离散时间信号和数字信号
处理 195
4.1 向量空间与子空间 196
4.2 零空间、列空间、行空间和线性
变换 206
4.3 线性无关集和基 216
4.4 坐标系 225
4.5 向量空间的维数 234
4.6 基的变换 242
4.7 数字信号处理 248
4.8 在差分方程中的应用 254
课题研究 263
补充习题 263
第5章 特征值与特征向量 266
介绍性实例 动力系统与斑点猫头鹰 266
5.1 特征向量与特征值 267
5.2 特征方程 274
5.3 对角化 281
5.4 特征向量与线性变换 287
5.5 复特征值 294
5.6 离散动力系统 301
5.7 在微分方程中的应用 310
5.8 特征值的迭代估计 318
5.9 在马尔可夫链中的应用 325
课题研究 334
补充习题 334
第6章 正交性和最小二乘法 337
介绍性实例 人工智能和机器学习 337
6.1 内积、长度和正交性 338
6.2 正交集 346
6.3 正交投影 355
6.4 格拉姆-施密特方法 364
6.5 最小二乘问题 370
6.6 机器学习和线性模型 379
6.7 内积空间 388
6.8 内积空间的应用 395
课题研究 402
补充习题 402
第7章 对称矩阵和二次型 405
介绍性实例 多波段的图像处理 405
7.1 对称矩阵的对角化 406
7.2 二次型 412
7.3 条件优化 419
7.4 奇异值分解 426
7.5 在图像处理和统计学中的应用 435
课题研究 443
补充习题 443
第8章 向量空间的几何学 445
介绍性实例 柏拉图多面体 445
8.1 仿射组合 446
8.2 仿射无关性 454
8.3 凸组合 463
8.4 超平面 470
8.5 多面体 478
8.6 曲线与曲面 489
课题研究 500
补充习题 501
第9章 优化 503
介绍性实例 柏林空运 503
9.1 矩阵博弈 503
9.2 线性规划——几何方法 518
9.3 线性规划——单纯形法 528
9.4 对偶问题 542
课题研究 551
补充习题 551
附录 554
附录A 简化阶梯形矩阵的唯一性 554
附录B 复数 554
术语表 559
奇数习题答案 574