内容简介这是一本能指导企业利用MLOps技术构建可靠、高效、可复用、可扩展的机器学习模型从而实现AI工程化落地的著作。由国内AI领域的独角兽企业第四范式的联合创始人和技术VP领衔撰写,从工具、技术、企业级应用、成熟度评估4个维度对MLOps进行了全面的讲解。本书的主要内容包括如下9个方面:(1)MLOps的核心概念和方法,可以帮助读者全面了解MLOps的基本原理;(2)MLOps涉及的几种角色,以及这些角色之间如何协作;(3)机器学习项目的基础知识和全流程,是学习和应用MLOps的基础;(4)MLOps中的数据处理、主要流水线工具Airflow和MLflow、特征平台和实时特征平台OpenMLDB、推理工具链Adlik,为读者系统讲解MLOps的技术和工具;(5)云服务供应商的端到端MLOps解决方案;(6)第四范式、网易、小米、腾讯、众安金融等企业的MLOps工程实践案例和经验;(7)MLOps的成熟度模型,以及微软、谷歌和信通院对MLOps成熟度模型的划分;(8)针对不同规模的企业和团队的MLOps最佳实践,帮助他们量身定做MLOps策略;(9)MLOps的未来发展趋势,以及如何将新技术融入MLOps实践中。本书深入浅出、循序渐进地讲解了如何在实际项目中利用MLOps进行机器学习模型的部署、监控与优化,以及如何利用MLOps实现持续集成与持续交付等高效的工作流程。通过企业级的MLOps案例和解决方案,帮助读者轻松掌握MLOps的设计思路以及如何应用MLOps解决实际问题。