本书以深度学习在计算机视觉领域的常用技术与案例相结合的方式,深入浅出地介绍计算机视觉的常见任务及实现技术。全书共7章,内容包含概述、图像处理基本操作、深度学习视觉基础任务、基于FaceNet的人脸识别实战、基于Faster R-CNN的目标检测实战、基于U-Net的城市道路场景分割实战、基于SRGAN的图像超分辨率技术实战等。本书大部分章包含操作实践代码和课后习题,希望能够帮助读者在计算机视觉基础任务中应用算法,巩固所学内容。本书可以作为高校人工智能相关专业教材,也可以作为从事计算机视觉技术研究的从业者和科技人员的参考用书。对于有一定基础和经验的读者,本书也能帮助他们查漏补缺,深入理解和掌握相关原理及方法,提升解决实际问题的能力。