本书是一本全面介绍数据挖掘基本原理、核心算法以及典型应用方法的专业书籍。第4版在前三版的基础上,对数据挖掘的方法论和知识点进行了重新归纳,按照基础篇、提高篇和应用篇进行设计。从方法论上说,数据挖掘是一个方法和原理逐步演变的过程。首先, 基础的数据挖掘方法主要有“关联规则”“分类”“聚类”,它们是数据挖掘的灵魂和基础,因此基础篇是了解和学习数据挖掘技术的入门知识。其次,随着数据挖掘技术研究和应用的深入,序列数据挖掘和深度神经网络得到充分研究。前者突破数据库的数据约束,面向时间序列发现有价值的知识模式; 后者突破浅层神经网络的性能瓶颈,为多模态数据的自主挖掘提供新的解决途径。因此,“序列模式”和“深度神经网络”构成提高篇。 ,以互联网数据挖掘、空间数据挖掘构成应用篇。全书分为3篇共9章,各章相对独立,以利于读者选择性学习。在每章后面都专设一节对本章内容和文献引用情况进行归纳,以利于读者了解本章内容的知识点和检索原始参考资料。本书可作为计算机专业研究生或高年级本科生教材,也可作为从事计算机研究和开发人员的参考资料。作为教材,教师可以根据课时安排进行选择性教学。对于研究和开发人员,本书不仅是一本具有较高参考价值的专业书籍,而且也是学习典型算法及其原理的很好的教科书。