前言
Chapter 1 Mathematical Preliminaries(数学基础知识)
1.1 Mathematics English(数学英语)
1.2 Review of calculus(微积分回顾)
1.2.1 Limits and continuity(极限和连续性)
1.2.2 Differentiability(可微性)
1.2.3 Integration(积分)
1.2.4 Taylor polynomials and series(泰勒多项式和级数)
1.2.5 Examples(例题)
1.3 Errors and significant digits(误差和有效数字)
1.3.1 Source of errors(误差的来源)
1.3.2 Absolute error and relative error( 误差和相对误差)
1.3.3 Significant digit(or figure)(有效数字)
1.3.4 How to avoid the loss of accuracy(如何避免精度的丢失)
1.3.5 Examples(例题)
1.4 本章要点(Highlights)
1.5 问题讨论(Questions for discussion)
1.6 关键术语(Key terms)
1.7 延伸阅读(Extending reading)
1.7.1 背景知识
1.7.2 数学家传记:泰勒(Taylor)
1.7.3 数学家传记:黎曼(Riemann)
1.8 习题(Exercises)
Chapter 2 Direct Methods for Solving Linear Systems(解线性方程组的直接法)
2.1 Gauss elimination method(Gauss消元法)
2.1.1 Some preliminaries(预备知识)
2.1.2 Gauss elimination with backward-substitution process(可回代的Gauss消元法)
2.2 Pivoting strategies(选主元策略)
2.2.1 Partial pivoting(maximal column pivoting)( 列主元)
2.2.2 Scaled partial pivoting(scaled-column pivoting)(按比例列主元)
2.3 Matrix factorization(矩阵分解法)
2.3.1 Doolittle factorization(Doolittle分解)
2.3.2 Crout factorization(Crout分解)
2.3.3 Permutation matrix(置换矩阵)
2.4 Special types of matrices(特殊形式矩阵的三角分解)
2.4.1 Strictly diagonally dominant matrix(严格对角占优矩阵)
2.4.2 Positive definite matrix(正定矩阵)
2.4.3 Strictly diagonally dominant tridiagonal matrix(严格对角占优三对角矩阵)
2.5 本章算法程序及实例(Algorithms and examples)
2.5.1 Gauss消元法(Gauss elimination method)
2.5.2 选主元策略(Pivoting strategies)
2.5.3 LU分解法(LU decomposition)
2.6 本章要点(Hightlights)
2.7 问题讨论(Questions for discussion)
2.8 关键术语(Key terms)
2.9 延伸阅读(Extending reading)
2.10 习题(Exercises)
Chapter 3 Iterative Techniques in Matrix Algebra(矩阵代数迭代技术)
3.1 Norms of vectors and matrices(向量范数与矩阵范数)
3.1.1 Vector norm(向量范数)