本书是一本深度学习从入门、算法到应用实践的书籍。全书共9章,第1章介绍深度学习基础,主要介绍基本概念和基本算法;第2章介绍深度学习的计算平台,主要介绍深度神经网络计算芯片TPU的架构原理;第3章介绍深度学习编程环境和操作基础,引导零基础读者快速入门Linux操作系统、Python编程语言、TensorFlow和PyTorch深度学习框架,为实现深度学习算法开发及应用部署奠定基础;第4~8章基于卷积神经网络,分别聚焦计算机视觉领域的几大经典任务,包括图像的分类、目标检测、语义分割、实例分割、人脸检测与识别等;第9章介绍循环神经网络,关注时序序列处理任务。本书每章讲解一系列经典神经网络的创新性思路,给出了详细的模型结构解析,并提供了具体的实践项目。从代码解析、网络训练、网络推理到模型部署,带领读者从理论一步步走向实践。本书既可作为高等学校深度学习相关课程的教材,也可作为从事人工智能应用系统开发的科研和技术人员参考用书。