第1章 Sturm-Liouville问题描述
1.1 物理背景
1.2 微分算子的相关研究成果
第2章 三阶微分算子的谱分解
2.1 三阶微分算子的自伴实现及其Green函数
2.1.1 预备知识
2.1.2 算子公式和自伴性
2.1.3 Green函数
2.2 三阶微分算子的特征值关于问题的依赖性
2.2.1 预备知识
2.2.2 特征值关于问题的连续依赖
2.2.3 特征值的导数
第3章 非连续Sturm-Liouville算子的谱分解
3.1 特征值的存在与分布
3.1.1 预备知识
3.1.2 算子和 小算子
3.1.3 算子T自共轭的判别准则
3.1.4 特征值的分布
3.2 特征函数系的完备性
3.3 特征值及特征函数的求解
3.3.1 预备知识
3.3.2 判别函数
3.3.3 数值实例
3.4 特征函数的振动性
3.4.1 预备知识
3.4.2 特征函数的振动性
3.4.3 数值实例
3.5 特征值的交错性
3.5.1 预备知识
3.5.2 λn的几何刻画
3.5.3 特征值之间的交错关系
第4章 多点Sturmm-Liouville问题的可解性和强制性
4.1 预备知识
4.2 具有非齐次转移条件的边值问题
4.3 具有泛函条件的多点边值问题的Fredholm性质
4.4 问题主要部分的同构性和强制性
4.5 非经典边界条件下主要问题的可解性与强制性
参考文献
主要符号表
附录A Hilbert空间的线性算子
附录B 常型的对称微分算子