白矮星——坍缩了的太阳
同时,回过头来看中央恒星,既然可供燃烧的燃料都耗尽了,就再也没有什么能阻碍恒星在它自身引力作用下的坍缩了,而且这种坍缩发生得非常快速。最终,恒星的密度变得如此之大,导致一种新的抵抗力——简并压力——的产生,开始发挥作用并与引力相抗衡。简并压力的产生是“不相容原理”的结果,这是量子力学理论中的一条基本原理,即不可能有两个粒子能处于同一种状态下,也就是说,如果两个具有相同的电量、质量和能量的粒子靠得太近,它们就会互相排斥。恒星会一直坍缩,直到简并压力和向内挤压的引力恰好达到平衡为止。在这个新状态下的恒星成为一个比地球还小但是密度却高得令人难以置信的致密球体,称为“白矮星”。一勺白矮星的物质即重达数吨。到这一阶段,地球将退离至距这个能源耗尽的太阳的虚弱残骸2.7亿千米的地方。
接下来的命运又将如何?答案是“变化不大”。白矮星是资源枯竭的恒星,它没有能源,能做的唯一一件事就是在微弱的辐射中慢慢变暗,最后变得和周围环境温度相同。它变成一颗冰冷、暗淡的黑矮星所需要的时间之长超乎想象,事实上,相比之下宇宙都显得太年轻,还没能形成一颗黑矮星。或许我们的太阳将定格为一颗微小的、死亡的黑矮星,但仍然被残存的行星所环绕。
中子星和黑洞
质量较大的恒星的结局则有所不同。尤其是当恒星质量很大时,它的核心变成白矮星后,质量仍超过了所谓“钱德拉塞卡质量”,即1.4倍太阳质量,这时量子简并压力也不足以和引力抗衡了。相反,引力是如此巨大,以至于质子和电子都被挤压在一起,变成了中子,恒星成为一颗“中子星”,它的密度比白矮星还要大得多,一勺中子星物质的质量就与全人类的总质量相当!中子星个头极小,直径不超过15千米,但它们的平均质量高达太阳质量的1.5倍。如果你能站在一颗中子星的表面,你的重量将达到百亿吨的量级。中子星实际上也是超新星遗迹中最常见的天体。我们看到的神秘天体——脉冲星,其实就是中子星的一种伪装。
在超大质量的超新星爆发事件中,中子星也不是快速坍缩的恒星核心的最终结局。一旦它的核能被耗尽,坍缩开始了,但这次它是如此猛烈,以至于没有什么能阻止它。恒星不停地坍缩、坍缩,变得越来越致密,经历了中子星阶段也不会停止。在此过程中,逃逸速度不断增加。任何质量小于8倍太阳质量的恒星都将以白矮星或中子星的形式结束它的一生。如果恒星的质量比这更大,坍缩将势不可挡,正如我们已经看到的那样,一颗黑洞由此而生。