但是,当一系列的业务都实现计算机化之后,那些从事计算机业务的企业却遭遇了瓶颈。不管他们如何提高硬件和软件的处理性能,如果需要计算机化的业务流程没有增加,顾客对性能没有特别需求,那么他们就无法继续销售自己的商品。所以,不管是硬件厂商还是软件厂商,还是使用这些提供计算机服务的厂商,所有与计算机相关的企业,都必须对已经得到满足的顾客们,提供一个购买他们更新技术的“理由”。
从好的方面来看,要想将已经足以满足顾客需要的性能更好地加以利用,就要考虑“如何创造更多的价值”。而实际上,计算机企业所考虑的是向顾客传达“为了找出创造更多价值的方法,必须进行大量的数据处理”,为了让顾客接受这一提议,必须有一个“明显对商业有价值的理由”。
以现在的计算机技术来看,不管是多么庞大的数据量或者多么繁杂的计算都能够胜任,因此需要考虑的问题就变成了应该针对什么进行计算,而答案除了统计分析之外再无其他。当然,如果只是将“统计分析”这个简单的词语作为题目,会让人感觉缺乏吸引力,于是就诞生出“大数据”和“商务智能”的概念。现在大家之所以都对这两个题目和统计学如此关注,恐怕就是出于上述原因。
计算机行业的业界巨人,在弗明汉研究使用穿孔卡片和大型计算机时代就为其提供技术支持的IBM公司在这一点上表现得最为突出。IBM斥资数十亿美元收购了在商务智能方面非常有名的Cognos公司,以及开发统计分析软件的SPSS公司,这两家公司都是在这一领域拥有丰富经验和影响力的公司。据说2005~2011年之间,IBM公司对统计学和商务智能相关企业的投资金额已经超过140亿美元。
除了IBM之外,微软公司以及在数据库领域非常有名的甲骨文公司,还有NTT数据公司,都开始积极地收购与统计学和商务智能相关的企业。
或许这几家公司都已经发现,在接下来的时间里从自己的商业领域产生价值的主营产业,都在其中。
最能够证明这一推测的根据,来自于微软在专门用于招聘的网页上于2010年8月23日发表的一篇文章,其中提到技术领域今后最热门的3个专业,如下所示。
数据分析、机械学习、人工智能、自然语言处理。
商务智能、竞争分析。