第1章 绪论
1.1 通信系统的基本概念
1.1.1 通信系统的组成
1.1.2 通信系统的基本特性
1.1.3 通信系统的信道
1.1.4 通信系统中的信号
1.1.5 通信系统中的发送与接收设备
1.2 信号传输的基本问题
1.2.1 信号通过线性系统
1.2.2 信号通过非线性系统
1.2.3 干扰
1.3 通信电路的基本形式
1.4 关于本书的内容
1.4.1 关于信号变换的理论和技术
1.4.2 关于电路
第2章 滤波器
2.1 引言
2.2 滤波器的特性和分类
2.2.1 滤波器的特性
2.2.2 滤波器的分类
2.3 LC滤波器;
2.3.1 LC串、并联谐振回路
2.3.2 般LC滤波器
2.4 声表面波滤波器
2.5 有源RC滤波器
2.5.1 构成有源RC滤波器的单元电路
2.5.2 运算仿真法实现有源RC滤波器
2. 5.3 级联法实现有源RC滤波器(x)
2.5.4 自动校正有源RC滤波器(x)
2.6 抽样数据滤波器(x)
2.6.1 抽样数据单元电路
2.6.2 抽样数据滤波器
2.6.3 连续域到离散域的映射
2.7 小结
习题
第3章 高频放大器
3.1 引言
3.2 晶体管的高频小信号等效电路和参数
3.2.1 双极型晶体管混合x型等效电路和参数
3.2.2 场效应管的等效电路和参数
3.2.3 晶体管的y参数等效电路
3.3 高频小信号宽带放大器
3.3.1 概述
3.3.2 共发射极放大器
3.3.3 共基极放大器
3.3.4 共发共基级联电路
3.3.5 场效应管高频小信号放大器
3.3.6 展宽频带的措施(x)
3.3.7 自动增益控制(ACC)电路
3.4 放大器的噪声
3.4.1 电阻的热噪声
3.4.2 电子器件的噪声
3.4.3 噪声系数
3.4.4 接收机的灵敏度与最小可检测信号
3.4.5 噪声温度
3.4.6 低噪声放大器(x)
3.5 宽带功率放大器(x)
3.5.1 A类功率放大器的基本电路特性
3.5.2 B类与AB类功率放大器
3.5.3 传输线变压器
3.5.4 宽频带放大器晶体管工作状态的选择
3.5.5 功率的合成与分配
3.6 小结
习题
第4章 非线性电路及其分析方法
4.1 引言
4.2 非线性电路的基本概念与非线性元件
4.2.1 非线性电路的基本概念
4.2.2 非线性元件
4.3 非线性电路的分析方法
4.3.1 非线性电路与线性电路分析方法的异同点
4.3.2 非线性电阻电路的近似解析分析
4.3.3 非线性动态电路分析简介(x)
4.4 非线性电路的应用举例
4.4.1 C类谐振功率放大器
4.4,2 D类和E类功率放大器(x)
4.4.3 倍频器
4.4.4 模拟相乘器
4.4.5 时变参量电路与变频器
4.5 小结
附录 余弦脉冲系数表
习题
第5章 正弦波振荡器
5.1 引言
5.2 LC振荡器的基本工作原理
5.2.1 LC回路的自由振荡现象
5.2.2 振荡特性与振荡条件
5.2.3 自给偏置对振荡状态的影响
5.3 LC振荡器的电路分析
5.3.1 LC振荡器的基本构成
5.3.2 三点式振荡器
5.4 振荡器的频率稳定度
5.4.1 频率稳定度的计量
5.4.2 导致振荡频率不稳定的原因
5.4.3 主要稳频措施
5.5 晶体振荡器
5.5.1 石英谐振器的基本特性
5.5.2 晶体振荡电路
5.6 负阻振荡器(x)
5.6.1 负阻器件的基本特性
5.6.2 负阻振荡电路
5.7 RC振荡器与开关电容振荡器
5.7.1 及C正弦波振荡器
5.7.2 开关电容振荡器
5.8 特殊振荡现象(x)
5.8.1 间歇振荡现象
5.8.2 频率占据现象
5.8.3 寄生振荡现象
5.9 小结
6.2.1 标准幅度调制
6.2.2 抑制载波调幅、单边带调幅和残留边带调幅
6.2.3 正交幅度调制与解调
6.2.4 数字信号调幅
6.3 角度调制
6.3.1 角度调制的基本概念
6.3.2 频率调制信号的性质
6.3.3 实现频率调制的方法与电路
6.3.4 调频波的解调方法与电路
6.3.5 数字信号的相位调制
6.4 小结
习题
第7章 锁相环路
7.1 引言
7.2 PLL基本原理
7.2.1 PLL的组成与数学表示式
7.2.2 PLL的环路方程与相位模型
7.3 PLL的线性分析
7.3.1 PLL的线性模型与传递函数
7.3.2 PLL的跟踪特性
7.3.3 PLL的稳态相差
7.3.4 PLL的频率特性
7.3.5 PLL的稳定性(ж)
7.3.6 PLL的噪声特性(ж)
7.4 PLL的非线性分析
7.4.1 一阶环路的非线性特性
7.4.2 二阶环路的非线性特性
7.5 集成PLL主要部件
7.5.1 集成鉴相器
7.5.2 集成压控振荡器
7.6 PLL电路实例与应用举例(ж)
7.6.1 PLL电路实例
7.6.2 PLL应用举例
7.7 数字锁相环路(ж)
7.7.1 数字锁相环路的基本部件
7.7.2 数字锁相环路的工作过程
7.7.3 数字锁相环路的基本方程及模型
7.8 自动频率控制(AFC)电路
7.8.1 AFC电路的组成
7.8.2 AFC电路的基本特征
7.8.3 AFC电路应用举例(x)
7.9 小结
习题
附录 集成锁相环路宏模型(x)
第8章 频率合成技术
8.1 引言
8.2 频率合成器主要特性
8.2.1 频率合成器的主要技术指标
8.2.2 相位噪声
8.3 直接频率合成法
8.4 锁相频率合成法
8.4.1 锁相频率合成器的基本构成
8.4.2 锁相频率合成器方案设计中的一些考虑(x)
8.4.3 锁相频率合成器的实际构成方案(x)
8.5 直接数字频率合成
8.5.1 直接数字频率合成(DDS)的基本原理
8.5.2 直接数字频率合成技术
8.5.3 直接数字频率合成器性能以及方案设计中的一些考虑(x)
8.5.4 DDS/PLL组合式频率合成器(x)
8.6 频率合成器集成电路(x)
8.6.1 通用集成锁相环频率合成器
8.6.2 吞脉冲集成锁相频率合成器
8.6.3 直接数字频率合成器专用芯片
8.7 小结
习题
名词索引
参考文献
注:带(x)者为作者建议可列为选读内容的部分
Chapter 30 Data Converter Modeling
30.1 Sampling and Aliasing: A Modeling Approach
30.1.1 Impulse Sampling
A Note Concerning the AAF and RCF
Time-Domain Description of Reconstruction
Using SPICE for Spectral Analysis (Looking at the Spectrum of
a Signal)
Representing the Impulse Sampler''s Output in the Z-Domain
An Important Note
30.1.2 The Sample and Hold
SPICE Modeling the Sample and Hold
S/H Spectral Response
Circuit Concerns for Implementing the S/H
30.2 SPICE Models for DACs and ADCs
30.2.1 The Ideal DAC
SPICE Modeling Approach
30.2.2 The Ideal ADC
Summary
30.3 Quantization Noise.
30.3.1 Viewing the Quantization Noise Spectrum Using
Simulations
An Important Note
RMS Quantization Noise Voltage
Treating Quantization Noise as a Random Variable
Calculating RMS Quantization Noise Voltage from a Spectrum
The DFT''s Relationship to the Continuous Time Fourier
Transform
30,3.2 Quantization Noise Voltage Spectral Density
Reducing Quantization Noise Using Averaging
The Noise Spectral Density View of Averaging
An Important Note
Practical Implementation of Averaging in ADCs
Chapter 31 Data Converter SNR
31.1 Data Converter SNR: An Overview.
31.1.1 Effective Number of Bits
Signal-to-Noise Plus Distortion Ratio
Spurious-Free Dynamic Range
Dynamic Range
Specifying SNR and SNDR
31.1.2 Clock Jitter
Using Oversampling to Reduce Sampling Clock Jitter Stability
Requirements
A Practical Note
Modeling Clock Jitter with SPICE
Using Our SPICE Jitter Model
31.1.3 A Tool: The Spectral Density
The Spectral Density of Deterministic Signals: An Overview
The Spectral Density of Random Signals: An Overview
Specifying Phase Noise from Measured Data
31.2 Improving SNR Using Averaging
31.2.1 Using Averaging to Improve SNR
Spectral Density View of Averaging Revisited
An Important Observation
Jitter and Averaging
Relaxed Requirements Placed on the Antialiasing Filter
Data Converter Linearity Requirements
Adding a Noise Dither to the ADC Input
The Z-Plane
31.2.2 Decimating Filters for ADCs
The Accumulate and Dump
Averaging without Decimation
Relaxed Requirements Placed on the Antialiasing Filter
Revisited
Implementing Averaging Filters
Aliasing Concerns When Using Decimation
A Note Concerning Stability
Decimating Down to 2B
31.2.3 Interpolating Filters for DACs
The Dump and Interpolate
Practical Implementation of Interpolators
31.2.4 Bandpass and Highpass Sinc Filters
Canceling Zeroes to Create Highpass and Bandpass Filters
Frequency Sampling Filters
31.3 Using Feedback to Improve SNR
31.3.1 The Discrete Analog Integrator
A Note Concerning Block Diagrams
31.3.2 Modulators
Chapter 32 Noise-Shaping Data Converters
32.1 Noise-Shaping Fundamentals.
32.1.1 SPICE Models
Nonoverlapping Clock Generation and Switches
Op-Amp Modeling
SPICE Modeling a 1-Bit ADC
32.1.2 First-Order Noise-Shaping
A Digital First-Order NS Demodulator
Modulation Noise in First-Order NS Modulators
RMS Quantization Noise in a First-Order Modulator
Decimating and Filtering the Output of a NS Modulator
Implementing the Sinc Averaging Filter Revisited
Analog Sinc Averaging Filters using SPICE
Using our SPICE Sinc Filter Model
Analog Implementation of the First-Order NS Modulator
The Feedback DAC
Understanding Averaging and the Use of Digital Filtering with
the Modulator
Pattern Noise from DC Inputs (Limit Cycle Oscillations)
Integrator and Forward Modulator Gain
Comparator Gain, Offset, Noise, and Hysteresis
Op-Amp Gain (Integrator Leakage)
Op-Amp Settling Time
Op-Amp Offset
Op-Amp Input Referred Noise
Practical Implementation of the First-Order NS Modulator
FullyDifferential Modulator with a Single-Ended Input
32.1.3 Second-Order Noise-Shaping
Second-Order Modulator Topology
Integrator Gain
Implementing Feedback Gains in the DAI
Using Two Delaying Integrators to Implement the Second-Order
Modulator
Selecting Modulator (Integrator) Gains
Understanding Modulator SNR
32.2 Noise-Shaping Topologies
32.2.1 Higher-Order Modulators
M''h-Order Modulator Topology
Decimating the Output of an Mth-Order NS Modulator
Implementing Higher-Order, Single-Stage, Modulators
32.2.2 Multibit Modulators
Simulating a Multibit NS Modulator Using SPICE
Multibit Demodulator (Used in a NS DAC) Implementation (Error
Feedback)
Implementation Concerns
32.2.3 Cascaded Modulators
Second-Order (1-1) Modulators
Third-Order (1-1-1) Modulators
Third-Order (2-1) Modulators
Implementing the Additional Summing Input
32.2.4 Bandpass Modulators
Implementing a Bandpass Modulator
Chapter 33 Submicron CMOS Circuit Design 2
33.1 Submicron CMOS: Overview and Models
33.1.1 CMOS Process Flow
33.1.2 Capacitors and Resistors
Using a MOSFET as a Capacitor
Using a Native or Natural MOSFET Capacitor
The Floating MOS Capacitor
Metal Capacitors
An Important Note
Resistors
33.1.3 SPICE MOSFET Modeling
Model Selection
Model Parameters
An Important Note
A Note Concerning "Long L MOSFETs"
33.2 Digital Circuit Design
33.2.1 The MOSFET Switch
Bidirectional Switches
A Clocked Comparator
Common-Mode Noise Elimination
33.2.2 Delay Elements
33.2.3 An Adder
33.3 Analog Circuit Design.
33.3.1 Biasing
Selecting the Excess Gate Voltage
Selecting the Channel Length
Small-Signal Transconductance, gm
MOSFET Transition Frequency, fT
The Beta Multiplier Self-Biased Reference
33.3.20p-Amp Design
Output Swing
Slew-rate Concerns
Differential Output Op-Amp
33.3.3 Circuit Noise
Thermal Noise
The Spectral Characteristics of Thermal Noise
Noise Equivalent Bandwidth
MOSFET Noise
Noise Performance of the Source-Follower
Noise Performance of a Cascade of Amplifiers
DAI Noise Performance
Chapter 34 Implementing Data Converters
34.1 R-2R Topologies for DACs
34.1.1 The Current-Mode R-2R DAC
34.1.2 The Voltage-Mode R-2R DAC
34.1.3 A Wide-Swing Current-Mode R-2R DAC
DNL Analysis
INL Analysis
Switches
Experimental Results
Improving DNL (Segmentation)
Trimming DAC Offset
Trimming DAC Gain
Improving INL by Calibration
34.1.4 Topologies Without an Op-Amp
The Voltage-Mode DAC
Two Important Notes Concerning Glitches
The Current-Mode (Current Steering) DAC
34.20p-Amps in Data Converters.
Gain Bandwidth Product of the Noninverting Op-Amp Topology
Gain Bandwidth Product of the Inverting Op-Amp Topology
34.2.10p-Amp Gain
34.2.20p-Amp Unity Gain Frequency
34.2.30p-Amp Offset
Adding an Auxiliary Input Port
34.3 Implementing ADCs
34.3.1 Implementing the S/H
A Single-Ended to Differential Output S/H
34.3.2 The Cyclic ADC
Comparator Placement
Implementing Subtraction in the S/H
Understanding Output Swing
34.3.3 The Pipeline ADC
Using 1.5 Bits/Stage
Capacitor Error Averaging
Comparator Placement
Clock Generation
Offsets and Alternative Design Topologies
Dynamic CMFB
Layout of Pipelined ADCs
Chapter 35 Integrator-Based CMOS Filters
35.1 Integrator Building Blocks
35.1.1 Lowpass Filters
35.1.2 Active-RC Integrators
Effects of Finite Op-Amp Gain Bandwidth Product
Active-RC SNR
35,1.3 MOSFET-C Integrators
Why use an Active Circuit (an Op-Amp)
35.1.4 gm-C (Transconductor-C) Integrators
Common-Mode Feedback Considerations
A High-Frequency Transconductor
35.1.5 Discrete-Time Integrators
An important Note
Exact Frequency Response of a First-Order Discrete- Time
Digital (or Ideal SC) Filter
35.2 Filtering Topologies.
35.2.1 The Bilinear Transfer Function
Active-RC Implementation
Transconductor-C Implementation
Switched-Capacitor Implementation
Digital Filter implementation
The Canonic Form (or Standard Form) of a Digital Filter
35.2.2 The Biquadratic Transfer Function
Active-RC Implementation
Switched-Capacitor Implementation
High Q
Q Peaking and Instability
Transconductor-C Implementation
The Digital Biquad
35.3 Filters using Noise-Shaping.
Removing Modulation Noise
Implementing the Multipliers
Chapter 36 At the Bench
36.1 A Push-Pull Amplifier
Deadbug Prototyping
Probing
Testing the Circuit
36.2 A First-Order Noise-Shaping Modulator
Prototyping the Modulator
36.3 Measuring 1/f Noise
MOSFET Noise
Input-Referred Noise Voltage
Chopper Stabilization
36,4 A Discrete Analog Integrator
Clock Generation
Prototyping the Filter
36.5 Quantization Noise
Prototyping the ADC Circuit
Index
About the Author
本书为国外高校电子信息类优秀教材(英文影印版)之一。
本书介绍了MATLAB在数字信号处理中的应用,包括时分信号与系统,时分傅里叶变换,2变换,离散傅里叶变换,数字滤波器结构,FIR滤波器设计,IIR滤波器设计,以及在自适应滤波器、通信中的应用。本书通过使用MATLAB这一"动态实验室"帮助读者提高解决问题的能力和严谨思维的能力。
本书可作为电子工程、通信专业本科生教材,也可作为相关专业工程技术人员的参考书。
I INTRODUCTION 1
Overview of Digital Signal Processing 2
A Few Words about MATLAB 5
2 DISCRETE-TIME SIGNALS AND SYSTEMS
Discrete-time Signals 7
Discrete Systems 20
Convolution 22
Difference Equations 29
Problems 35
3 THE DISCRETE-TIME FOURIER ANALYSIS 40
The Discrete-time Fourier Transform (DTFT) 40
The Properties of the DTFT 47
The Frequency Domain Representation of LTl Systems 53
Sampling and Reconstruction of Analog Signals 60
Problems 74
4 THE z-TRANSFORM 80
The Bilateral z-Transform 80
Important Properties of the =-Transform 84
Inversion of the z-Transform 8g
System Representation in the z-Domain 95
Solutions of the Difference Equations 105
Problems 111
5 THE DISCRETE FOURIER TRANSFORM 116
The Discrete Fourier Series 117
Sampling and Reconstruction in the z-Domain 124
The Discrete Fourier Transform 12g
Properties of the Discrete Fourier Transform 13g
Linear Convolution using the DFT 154
The Fast Fourier Transform 160
Problems 172
6 DIGITAL FILTER STRUCTURES
182
Basic Elements 183
IIR Filter Structures 183
FIR Filter Structures 197
Lattice Filter Structures 208
Problems 219
7 FIR FILTER DESIGN 224
Preliminaries 224
Properties of Linear-phase FIR Filters 228
Window Design Techniques 243
Frequency Sampling Design Techniques 264
Optimal Equiripple Design Technique 277
Problems 294
8 IIR FILTER DESIGN 301
Some Preliminaries 302
Characteristics of Prototype Analog Filters 305
Analog-to-Digital Filter Transformations 327
Lowpass Filter Design Using MATLAB 345
Frequency-band Transformations 350
Comparison of FIR vs. IIR Filters 363
Problems 364
9
APPLICATIONS IN ADAPTIVE FILTERING 371
LMS Algorithm for Coefficient Adjustment 373
System Identification or System Modeling 376
Suppression of Narrowband Interference in a
Wideband Signal 377
Adaptive Lin Adaptive Channel Equalization 380
Summary 383
10 APPLICATIONS IN COMMUNICATIONS 384
Pulse-Code Modulation 384
Differential PCM (DPCM) 388
Adaptive PCM and DPCM (ADPCM) 392
Delta Modulation (DM) 396
Linear Predictive Coding (LPC) of Speech 399
Dual-tone Multifrequency (DTMF) Signals 403
Binary Digital Communications 408
Spread-Spectrum Communications 409
Summary 411
BIBLIOGRAPHY 412
INDEX 413
第1章 绪论
1.1 通信系统的基本概念
1.1.1 通信系统的组成
1.1.2 通信系统的基本特性
1.1.3 通信系统的信道
1.1.4 通信系统中的信号
1.1.5 通信系统中的发送与接收设备
1.2 信号传输的基本问题
1.2.1 信号通过线性系统
1.2.2 信号通过非线性系统
1.2.3 干扰
1.3 通信电路的基本形式
1.4 关于本书的内容
1.4.1 关于信号变换的理论和技术
1.4.2 关于电路
第2章 滤波器
2.1 引言
2.2 滤波器的特性和分类
2.2.1 滤波器的特性
2.2.2 滤波器的分类
2.3 LC滤波器;
2.3.1 LC串、并联谐振回路
2.3.2 般LC滤波器
2.4 声表面波滤波器
2.5 有源RC滤波器
2.5.1 构成有源RC滤波器的单元电路
2.5.2 运算仿真法实现有源RC滤波器
2. 5.3 级联法实现有源RC滤波器(x)
2.5.4 自动校正有源RC滤波器(x)
2.6 抽样数据滤波器(x)
2.6.1 抽样数据单元电路
2.6.2 抽样数据滤波器
2.6.3 连续域到离散域的映射
2.7 小结
习题
第3章 高频放大器
3.1 引言
3.2 晶体管的高频小信号等效电路和参数
3.2.1 双极型晶体管混合x型等效电路和参数
3.2.2 场效应管的等效电路和参数
3.2.3 晶体管的y参数等效电路
3.3 高频小信号宽带放大器
3.3.1 概述
3.3.2 共发射极放大器
3.3.3 共基极放大器
3.3.4 共发共基级联电路
3.3.5 场效应管高频小信号放大器
3.3.6 展宽频带的措施(x)
3.3.7 自动增益控制(ACC)电路
3.4 放大器的噪声
3.4.1 电阻的热噪声
3.4.2 电子器件的噪声
3.4.3 噪声系数
3.4.4 接收机的灵敏度与最小可检测信号
3.4.5 噪声温度
3.4.6 低噪声放大器(x)
3.5 宽带功率放大器(x)
3.5.1 A类功率放大器的基本电路特性
3.5.2 B类与AB类功率放大器
3.5.3 传输线变压器
3.5.4 宽频带放大器晶体管工作状态的选择
3.5.5 功率的合成与分配
3.6 小结
习题
第4章 非线性电路及其分析方法
4.1 引言
4.2 非线性电路的基本概念与非线性元件
4.2.1 非线性电路的基本概念
4.2.2 非线性元件
4.3 非线性电路的分析方法
4.3.1 非线性电路与线性电路分析方法的异同点
4.3.2 非线性电阻电路的近似解析分析
4.3.3 非线性动态电路分析简介(x)
4.4 非线性电路的应用举例
4.4.1 C类谐振功率放大器
4.4,2 D类和E类功率放大器(x)
4.4.3 倍频器
4.4.4 模拟相乘器
4.4.5 时变参量电路与变频器
4.5 小结
附录 余弦脉冲系数表
习题
第5章 正弦波振荡器
5.1 引言
5.2 LC振荡器的基本工作原理
5.2.1 LC回路的自由振荡现象
5.2.2 振荡特性与振荡条件
5.2.3 自给偏置对振荡状态的影响
5.3 LC振荡器的电路分析
5.3.1 LC振荡器的基本构成
5.3.2 三点式振荡器
5.4 振荡器的频率稳定度
5.4.1 频率稳定度的计量
5.4.2 导致振荡频率不稳定的原因
5.4.3 主要稳频措施
5.5 晶体振荡器
5.5.1 石英谐振器的基本特性
5.5.2 晶体振荡电路
5.6 负阻振荡器(x)
5.6.1 负阻器件的基本特性
5.6.2 负阻振荡电路
5.7 RC振荡器与开关电容振荡器
5.7.1 及C正弦波振荡器
5.7.2 开关电容振荡器
5.8 特殊振荡现象(x)
5.8.1 间歇振荡现象
5.8.2 频率占据现象
5.8.3 寄生振荡现象
5.9 小结
6.2.1 标准幅度调制
6.2.2 抑制载波调幅、单边带调幅和残留边带调幅
6.2.3 正交幅度调制与解调
6.2.4 数字信号调幅
6.3 角度调制
6.3.1 角度调制的基本概念
6.3.2 频率调制信号的性质
6.3.3 实现频率调制的方法与电路
6.3.4 调频波的解调方法与电路
6.3.5 数字信号的相位调制
6.4 小结
习题
第7章 锁相环路
7.1 引言
7.2 PLL基本原理
7.2.1 PLL的组成与数学表示式
7.2.2 PLL的环路方程与相位模型
7.3 PLL的线性分析
7.3.1 PLL的线性模型与传递函数
7.3.2 PLL的跟踪特性
7.3.3 PLL的稳态相差
7.3.4 PLL的频率特性
7.3.5 PLL的稳定性(ж)
7.3.6 PLL的噪声特性(ж)
7.4 PLL的非线性分析
7.4.1 一阶环路的非线性特性
7.4.2 二阶环路的非线性特性
7.5 集成PLL主要部件
7.5.1 集成鉴相器
7.5.2 集成压控振荡器
7.6 PLL电路实例与应用举例(ж)
7.6.1 PLL电路实例
7.6.2 PLL应用举例
7.7 数字锁相环路(ж)
7.7.1 数字锁相环路的基本部件
7.7.2 数字锁相环路的工作过程
7.7.3 数字锁相环路的基本方程及模型
7.8 自动频率控制(AFC)电路
7.8.1 AFC电路的组成
7.8.2 AFC电路的基本特征
7.8.3 AFC电路应用举例(x)
7.9 小结
习题
附录 集成锁相环路宏模型(x)
第8章 频率合成技术
8.1 引言
8.2 频率合成器主要特性
8.2.1 频率合成器的主要技术指标
8.2.2 相位噪声
8.3 直接频率合成法
8.4 锁相频率合成法
8.4.1 锁相频率合成器的基本构成
8.4.2 锁相频率合成器方案设计中的一些考虑(x)
8.4.3 锁相频率合成器的实际构成方案(x)
8.5 直接数字频率合成
8.5.1 直接数字频率合成(DDS)的基本原理
8.5.2 直接数字频率合成技术
8.5.3 直接数字频率合成器性能以及方案设计中的一些考虑(x)
8.5.4 DDS/PLL组合式频率合成器(x)
8.6 频率合成器集成电路(x)
8.6.1 通用集成锁相环频率合成器
8.6.2 吞脉冲集成锁相频率合成器
8.6.3 直接数字频率合成器专用芯片
8.7 小结
习题
名词索引
参考文献
注:带(x)者为作者建议可列为选读内容的部分
Chapter 30 Data Converter Modeling
30.1 Sampling and Aliasing: A Modeling Approach
30.1.1 Impulse Sampling
A Note Concerning the AAF and RCF
Time-Domain Description of Reconstruction
Using SPICE for Spectral Analysis (Looking at the Spectrum of
a Signal)
Representing the Impulse Sampler''s Output in the Z-Domain
An Important Note
30.1.2 The Sample and Hold
SPICE Modeling the Sample and Hold
S/H Spectral Response
Circuit Concerns for Implementing the S/H
30.2 SPICE Models for DACs and ADCs
30.2.1 The Ideal DAC
SPICE Modeling Approach
30.2.2 The Ideal ADC
Summary
30.3 Quantization Noise.
30.3.1 Viewing the Quantization Noise Spectrum Using
Simulations
An Important Note
RMS Quantization Noise Voltage
Treating Quantization Noise as a Random Variable
Calculating RMS Quantization Noise Voltage from a Spectrum
The DFT''s Relationship to the Continuous Time Fourier
Transform
30,3.2 Quantization Noise Voltage Spectral Density
Reducing Quantization Noise Using Averaging
The Noise Spectral Density View of Averaging
An Important Note
Practical Implementation of Averaging in ADCs
Chapter 31 Data Converter SNR
31.1 Data Converter SNR: An Overview.
31.1.1 Effective Number of Bits
Signal-to-Noise Plus Distortion Ratio
Spurious-Free Dynamic Range
Dynamic Range
Specifying SNR and SNDR
31.1.2 Clock Jitter
Using Oversampling to Reduce Sampling Clock Jitter Stability
Requirements
A Practical Note
Modeling Clock Jitter with SPICE
Using Our SPICE Jitter Model
31.1.3 A Tool: The Spectral Density
The Spectral Density of Deterministic Signals: An Overview
The Spectral Density of Random Signals: An Overview
Specifying Phase Noise from Measured Data
31.2 Improving SNR Using Averaging
31.2.1 Using Averaging to Improve SNR
Spectral Density View of Averaging Revisited
An Important Observation
Jitter and Averaging
Relaxed Requirements Placed on the Antialiasing Filter
Data Converter Linearity Requirements
Adding a Noise Dither to the ADC Input
The Z-Plane
31.2.2 Decimating Filters for ADCs
The Accumulate and Dump
Averaging without Decimation
Relaxed Requirements Placed on the Antialiasing Filter
Revisited
Implementing Averaging Filters
Aliasing Concerns When Using Decimation
A Note Concerning Stability
Decimating Down to 2B
31.2.3 Interpolating Filters for DACs
The Dump and Interpolate
Practical Implementation of Interpolators
31.2.4 Bandpass and Highpass Sinc Filters
Canceling Zeroes to Create Highpass and Bandpass Filters
Frequency Sampling Filters
31.3 Using Feedback to Improve SNR
31.3.1 The Discrete Analog Integrator
A Note Concerning Block Diagrams
31.3.2 Modulators
Chapter 32 Noise-Shaping Data Converters
32.1 Noise-Shaping Fundamentals.
32.1.1 SPICE Models
Nonoverlapping Clock Generation and Switches
Op-Amp Modeling
SPICE Modeling a 1-Bit ADC
32.1.2 First-Order Noise-Shaping
A Digital First-Order NS Demodulator
Modulation Noise in First-Order NS Modulators
RMS Quantization Noise in a First-Order Modulator
Decimating and Filtering the Output of a NS Modulator
Implementing the Sinc Averaging Filter Revisited
Analog Sinc Averaging Filters using SPICE
Using our SPICE Sinc Filter Model
Analog Implementation of the First-Order NS Modulator
The Feedback DAC
Understanding Averaging and the Use of Digital Filtering with
the Modulator
Pattern Noise from DC Inputs (Limit Cycle Oscillations)
Integrator and Forward Modulator Gain
Comparator Gain, Offset, Noise, and Hysteresis
Op-Amp Gain (Integrator Leakage)
Op-Amp Settling Time
Op-Amp Offset
Op-Amp Input Referred Noise
Practical Implementation of the First-Order NS Modulator
FullyDifferential Modulator with a Single-Ended Input
32.1.3 Second-Order Noise-Shaping
Second-Order Modulator Topology
Integrator Gain
Implementing Feedback Gains in the DAI
Using Two Delaying Integrators to Implement the Second-Order
Modulator
Selecting Modulator (Integrator) Gains
Understanding Modulator SNR
32.2 Noise-Shaping Topologies
32.2.1 Higher-Order Modulators
M''h-Order Modulator Topology
Decimating the Output of an Mth-Order NS Modulator
Implementing Higher-Order, Single-Stage, Modulators
32.2.2 Multibit Modulators
Simulating a Multibit NS Modulator Using SPICE
Multibit Demodulator (Used in a NS DAC) Implementation (Error
Feedback)
Implementation Concerns
32.2.3 Cascaded Modulators
Second-Order (1-1) Modulators
Third-Order (1-1-1) Modulators
Third-Order (2-1) Modulators
Implementing the Additional Summing Input
32.2.4 Bandpass Modulators
Implementing a Bandpass Modulator
Chapter 33 Submicron CMOS Circuit Design 2
33.1 Submicron CMOS: Overview and Models
33.1.1 CMOS Process Flow
33.1.2 Capacitors and Resistors
Using a MOSFET as a Capacitor
Using a Native or Natural MOSFET Capacitor
The Floating MOS Capacitor
Metal Capacitors
An Important Note
Resistors
33.1.3 SPICE MOSFET Modeling
Model Selection
Model Parameters
An Important Note
A Note Concerning "Long L MOSFETs"
33.2 Digital Circuit Design
33.2.1 The MOSFET Switch
Bidirectional Switches
A Clocked Comparator
Common-Mode Noise Elimination
33.2.2 Delay Elements
33.2.3 An Adder
33.3 Analog Circuit Design.
33.3.1 Biasing
Selecting the Excess Gate Voltage
Selecting the Channel Length
Small-Signal Transconductance, gm
MOSFET Transition Frequency, fT
The Beta Multiplier Self-Biased Reference
33.3.20p-Amp Design
Output Swing
Slew-rate Concerns
Differential Output Op-Amp
33.3.3 Circuit Noise
Thermal Noise
The Spectral Characteristics of Thermal Noise
Noise Equivalent Bandwidth
MOSFET Noise
Noise Performance of the Source-Follower
Noise Performance of a Cascade of Amplifiers
DAI Noise Performance
Chapter 34 Implementing Data Converters
34.1 R-2R Topologies for DACs
34.1.1 The Current-Mode R-2R DAC
34.1.2 The Voltage-Mode R-2R DAC
34.1.3 A Wide-Swing Current-Mode R-2R DAC
DNL Analysis
INL Analysis
Switches
Experimental Results
Improving DNL (Segmentation)
Trimming DAC Offset
Trimming DAC Gain
Improving INL by Calibration
34.1.4 Topologies Without an Op-Amp
The Voltage-Mode DAC
Two Important Notes Concerning Glitches
The Current-Mode (Current Steering) DAC
34.20p-Amps in Data Converters.
Gain Bandwidth Product of the Noninverting Op-Amp Topology
Gain Bandwidth Product of the Inverting Op-Amp Topology
34.2.10p-Amp Gain
34.2.20p-Amp Unity Gain Frequency
34.2.30p-Amp Offset
Adding an Auxiliary Input Port
34.3 Implementing ADCs
34.3.1 Implementing the S/H
A Single-Ended to Differential Output S/H
34.3.2 The Cyclic ADC
Comparator Placement
Implementing Subtraction in the S/H
Understanding Output Swing
34.3.3 The Pipeline ADC
Using 1.5 Bits/Stage
Capacitor Error Averaging
Comparator Placement
Clock Generation
Offsets and Alternative Design Topologies
Dynamic CMFB
Layout of Pipelined ADCs
Chapter 35 Integrator-Based CMOS Filters
35.1 Integrator Building Blocks
35.1.1 Lowpass Filters
35.1.2 Active-RC Integrators
Effects of Finite Op-Amp Gain Bandwidth Product
Active-RC SNR
35,1.3 MOSFET-C Integrators
Why use an Active Circuit (an Op-Amp)
35.1.4 gm-C (Transconductor-C) Integrators
Common-Mode Feedback Considerations
A High-Frequency Transconductor
35.1.5 Discrete-Time Integrators
An important Note
Exact Frequency Response of a First-Order Discrete- Time
Digital (or Ideal SC) Filter
35.2 Filtering Topologies.
35.2.1 The Bilinear Transfer Function
Active-RC Implementation
Transconductor-C Implementation
Switched-Capacitor Implementation
Digital Filter implementation
The Canonic Form (or Standard Form) of a Digital Filter
35.2.2 The Biquadratic Transfer Function
Active-RC Implementation
Switched-Capacitor Implementation
High Q
Q Peaking and Instability
Transconductor-C Implementation
The Digital Biquad
35.3 Filters using Noise-Shaping.
Removing Modulation Noise
Implementing the Multipliers
Chapter 36 At the Bench
36.1 A Push-Pull Amplifier
Deadbug Prototyping
Probing
Testing the Circuit
36.2 A First-Order Noise-Shaping Modulator
Prototyping the Modulator
36.3 Measuring 1/f Noise
MOSFET Noise
Input-Referred Noise Voltage
Chopper Stabilization
36,4 A Discrete Analog Integrator
Clock Generation
Prototyping the Filter
36.5 Quantization Noise
Prototyping the ADC Circuit
Index
About the Author
本书为国外高校电子信息类优秀教材(英文影印版)之一。
本书介绍了MATLAB在数字信号处理中的应用,包括时分信号与系统,时分傅里叶变换,2变换,离散傅里叶变换,数字滤波器结构,FIR滤波器设计,IIR滤波器设计,以及在自适应滤波器、通信中的应用。本书通过使用MATLAB这一"动态实验室"帮助读者提高解决问题的能力和严谨思维的能力。
本书可作为电子工程、通信专业本科生教材,也可作为相关专业工程技术人员的参考书。
I INTRODUCTION 1
Overview of Digital Signal Processing 2
A Few Words about MATLAB 5
2 DISCRETE-TIME SIGNALS AND SYSTEMS
Discrete-time Signals 7
Discrete Systems 20
Convolution 22
Difference Equations 29
Problems 35
3 THE DISCRETE-TIME FOURIER ANALYSIS 40
The Discrete-time Fourier Transform (DTFT) 40
The Properties of the DTFT 47
The Frequency Domain Representation of LTl Systems 53
Sampling and Reconstruction of Analog Signals 60
Problems 74
4 THE z-TRANSFORM 80
The Bilateral z-Transform 80
Important Properties of the =-Transform 84
Inversion of the z-Transform 8g
System Representation in the z-Domain 95
Solutions of the Difference Equations 105
Problems 111
5 THE DISCRETE FOURIER TRANSFORM 116
The Discrete Fourier Series 117
Sampling and Reconstruction in the z-Domain 124
The Discrete Fourier Transform 12g
Properties of the Discrete Fourier Transform 13g
Linear Convolution using the DFT 154
The Fast Fourier Transform 160
Problems 172
6 DIGITAL FILTER STRUCTURES
182
Basic Elements 183
IIR Filter Structures 183
FIR Filter Structures 197
Lattice Filter Structures 208
Problems 219
7 FIR FILTER DESIGN 224
Preliminaries 224
Properties of Linear-phase FIR Filters 228
Window Design Techniques 243
Frequency Sampling Design Techniques 264
Optimal Equiripple Design Technique 277
Problems 294
8 IIR FILTER DESIGN 301
Some Preliminaries 302
Characteristics of Prototype Analog Filters 305
Analog-to-Digital Filter Transformations 327
Lowpass Filter Design Using MATLAB 345
Frequency-band Transformations 350
Comparison of FIR vs. IIR Filters 363
Problems 364
9
APPLICATIONS IN ADAPTIVE FILTERING 371
LMS Algorithm for Coefficient Adjustment 373
System Identification or System Modeling 376
Suppression of Narrowband Interference in a
Wideband Signal 377
Adaptive Lin Adaptive Channel Equalization 380
Summary 383
10 APPLICATIONS IN COMMUNICATIONS 384
Pulse-Code Modulation 384
Differential PCM (DPCM) 388
Adaptive PCM and DPCM (ADPCM) 392
Delta Modulation (DM) 396
Linear Predictive Coding (LPC) of Speech 399
Dual-tone Multifrequency (DTMF) Signals 403
Binary Digital Communications 408
Spread-Spectrum Communications 409
Summary 411
BIBLIOGRAPHY 412
INDEX 413