《基于深度学习的医学图像数据可视化分析与处理》融合当前模式识别、人工智能技术的发展和作者科研实践的研究成果,详细描述了基于深度学习的医学图像数据可视化分析与处理的几个关键部分。包括对CT影像进行三维重建,还原检测物体的三维结构,进而对三维结构进行可视化分析;利用深度学习、深度信念网络、卷积神经网络和极限学习机等技术提取特征,进而对肺结节良恶性进行分类。《基于深度学习的医学图像数据可视化分析与处理》从多种技术出发,详细介绍了多方面的算法描述、实验结果和结果分析,力求向读者展示出医学图像数据分析、识别和可视化处理相关技术的新研究动态,希望能为从事相关研究的广大读者提供参考,对医学图像处理、深度学习技术的发展起到推动作用。《基于深度学习的医学图像数据可视化分析与处理》可作为高等院校图像分析、模式识别、可视化、人工智能和深度学习相关专业的教材,也可供专门从事智能信息处理、人工智能领域的科研人员和应用人员学习、参考。