抛砖引玉
大多数人认为,诗歌属于文学作品,而数字多在数学领域出现,诗歌与数字,是风马牛不相及的两回事儿。但实际上,很多诗人把数字用到了诗里,比如“两个黄鹂鸣翠柳,一行白鹭上青天”就是我们熟悉的名句。
诗人多非数学家,却在诗中融入了数学题目,这不仅让诗歌更加美妙,同时也普及了数学知识,真是让人叹为观止。
神秘登场
说到诗歌中的数字,就不能不说宋朝理学家邵雍(康节)的《蒙学诗》:“一望二三里,烟村四五家,亭台六七座,八九十枝花。”寥寥几笔,就使乡村宜人的景色展现在读者面前。这首诗把十个数字嵌入诗中,可以说是开了“十字诗”的先河。现在小孩子学习从一到十,还经常背这首数学科普诗歌。
清朝的乾隆皇帝,特别喜欢作诗。有一次游玩时,天降大雪,乾隆即兴赋诗一首:“一片两片三四片,五片六片七八片。九片十片十一片,飞入芦花都不见。”这首诗四句里竟然用了11个数字,形象地描绘了雪花入芦花的情景。
清代有位叫何佩玉的女诗人,擅长用数字作诗,她有一首:“一花一柳一鱼矶,一抹斜阳一鸟飞。一山一水中一寺,一片黄叶一僧归。”此诗连用诗歌一字,读起来却不觉得重复,且所写景色引人入胜。
这三首诗歌能在后世广为流传,或多或少也与数字有些关系吧。
我们知道,数学是一个很抽象的东西,很多人数学学不好是因为感到枯燥乏味,但是古人却想到了好办法,他们用诗的形式提出各种数学问题或用诗的形式解决数学题。代表人物有南宋的杨辉,元代的朱世杰、丁巨、贾亨,明代的程大位、刘仕隆等。
下面我们就请古人出题,欣赏欣赏他们的数字诗。
朱世杰的《四元玉鉴》和《或问歌录》共有12个用诗歌形式提出的数学题,比如,第一题:“今有方池一所,每面丈四方停。葭生两岸长其形,出水三十寸整。东岸蒲生一种,水上一尺无零。葭蒲稍接水齐平,借问三般怎定?”这里的三般指的是水深、蒲长、葭长。是不是很有意思?还有第四首:“我有一壶酒,携着游春走。遇店添一倍,逢友饮一斗。店友经三处,没了壶中酒。借问此壶中,当原多少酒。”聪明的你算出来了吗?
这两道题比较简单,还有比这复杂的,我们一起看看如何求解。
揭秘事实
著名的《孙子算经》中有这样一道题,原文为:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰二十三。”关于这个问题,在宋代一本笔记书里有一个诗歌解法:“三岁孩儿七十稀,五留廿一事尤奇。七度上元重相会,寒食清明便可知。”在古代,正月十五为上元,所以上元指的15;又称冬至百六是清明,清明节的前一天是寒食,所以寒食清明指的是105。答案是23。
这个故事流传到明代,程大位在《算法统宗》中用诗歌形式,写出了数学解法:“三人同行七十稀,五树梅花廿一枝。七子团圆月正半,除百零五便得知。”他这种解法包含了“剩余定理”。什么意思呢?此诗意为用3除的余数乘70,加上5除的余数乘21,再加上7除的余数乘15,如果结果比105多,那么就减去105的倍数。列式为:(2×70)+(3×21)+(2×15)-(2×105)=23。
说起程大位,他的《算法统宗》是数字入诗代表作,也是一本通俗有趣的数学书,对民间数学知识的普及做出了重要的贡献。编纂这本书,花了程大位20年。他将枯燥的数学题变成了朗朗上口的诗歌,在现在看来也不失为先进的教育理念,虽然做法比较难,但“数学也能很有趣”的思想很值得数学老师们借鉴。
程大位还有一首饮酒数学诗,类似于解二元一次方程组:“肆中饮客乱纷纷,薄酒名醨厚酒醇。好酒一瓶醉三客,薄酒三瓶醉一人。共同饮了一十九,三十三客醉颜生。试问高明能算士,几多醨酒几多醇?”这首诗的大意是:一瓶好酒可以醉倒3位客人;三瓶薄酒可以醉倒1位客人。现在33位客人醉倒了,他们共喝了19瓶酒。问其中好酒、薄酒分别是多少瓶?此题可以设好酒有X瓶,薄酒为Y瓶,列出方程组求解即可。