注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书生活时尚美食家常食谱食雕与拼盘

食雕与拼盘

食雕与拼盘

定 价:¥52.00

作 者: 梅方著
出版社: 世界图书出版公司
丛编项: 梅方烹饪大全
标 签: 菜谱 装饰雕塑

ISBN: 9787506214742 出版时间: 1992-01-01 包装: 平装
开本: 24开 页数: 156页 字数:  

内容简介

暂缺《食雕与拼盘》简介

作者简介

暂缺《食雕与拼盘》作者简介

图书目录

     Contents
    Part 1 Introduction to Kinetics and Many-Body Theory
   1. Boltzmann Equation
    1.1 Heuristic Derivation
    of the Semiclassical Boltzmann Equation
    1.2 Approach to Equilibrium, H-Theorem
    1.3 Linearization, Eigenfunction Expansion
   2. Numerical Solutions of the Boltzmann Equation
    2.1 Linearized Coulomb Boltzmann Kinetics
    of a 2D Electron Gas
    2.2 Ensemble Monte Carlo Simulation
    2.2.1 General Theory
    2.2.2 Simulation of the Relaxation Kinetics
    of a 2D Electron Gas
    2.3 N+N-N+-Structure: Boltzmann Equation Analysis
   3. Equilibrium Green Function Theory
    3.1 Second Quantization
    3.2 Green Functions
    3.2.1 Examples of Measurable Quantities
    3.3 Fluctuation-Dissipation Theorem
    3.4 Perturbation Expansion of the Green Function
    3.5 Examples of Simple Solvable Models
    3.5.1 Free-Particle Green Function
    3.5.2 Resonant-Level Model
    3.6 Self-Energy
    3.6.1 Electron-Phonon Interaction
    3.6.2 Elastic Impurity System; Impurity Averaging
    3.7 Finite Temperatures
    Part 11 Nonequilibrium Many-Body Theory
   4. Contour Ordered Green Functions
    4.1 General Remarks
    4.2 Two Transformations
    4.3 Analytic Continuation
   5 Basic Quantum Kinetic Equations
    5.1 The Kadanoff-Baym Formulation
    5.2 The Keldysh Formulation
   6. Boltzmann Limit
    6.1 Gradient Expansion
    6.2 Quasiparticle Approximation
    6.3 Recovery of the Boltzmann Equation
   7 Gauge Invariance
    7.1 Choice of Variables
    7.2 Gauge Invariant Quantum Kinetic Equation
    7.2.1 Driving Term
    7.2.2 Collision Term
    7.3 Retarded Green Function
   8. Quantum Distribution Functions
    8.1 Relation to Observables, and the Wigner Function
    8.2 Generalized Kadanoff-Baym Ansatz
    8.3 Summary of the Main Formal Results
    Part III Quantum Transport in Semiconductors
   9. Linear Transport
    9.1 Quantum Boltzmann Equation
    9.2 Linear Conductivity of Electron-Elastic Impurity Systems
    9.2.1 Kubo Formula
    9.2.2 Quantum Kinetic Formulation
    9.3 Weak Localization Corrections to Electric Conductivity
   10. A Model for Dynamical Disorder:
    The Gaussian White Noise Model
    10.1 Introduction
    10.2 Determination of the Retarded Green Function
    10.3 Kinetic Equation for the GWN
    10.4 Other Transport Properties
   11. Quantum High-Field Transport in Semiconductors
    11.1 Introduction
    11.2 Free Green Functions and Spectral Functions
    in an Electric Field
    11.3 Resonant-Level Model in High Electric Fields
    11.3.1 Introduction
    11.3.2 Retarded Green Function: Single Impurity Problem
    11.3.3 Retarded Green Function: Dilute Concentration
    of Impurities
    11.3.4 Analytic Continuation
    11.3.5 Quantum Kinetic Equation
    11.4 Quantum Kinetic Equation for Electron-Phonon Systems
    11.5 An Application:
    Collision Broadening for a Model Semiconductor
    11.5.1 Analytical Considerations
    11.5.2 A Simple Model:
    Optical Phonon Emission at T = 0
    11.6 Spatially Inhomogeneous Systems
   12. Transport in Mesoscopic Semiconductor Structures
    12.1 Introduction
    12.2 Nonequilibrium Techniques
    in Mesoscopic Tunneling Structures
    12.3 Model Hamiltonian
    12.4 General Expression for the Current
    12.5 Non-Interacting Resonant-Level Model
    12.6 Resonant Tunneling with Electron-Phonon Interactions
    12.7 Transport Through a Coulomb Island
   13. Time-Dependent Phenomena
    13.1 Introduction
    13.2 Applicability to Experiments
    13.3 Mathematical Formulation
    13.4 Average Current
    13.5 Time-Dependent Resonant-Level Model
    13.5.1 Response to Harmonic Modulation
    13.5.2 Response to Step-Like Modulation
    13.6 Linear-Response
    13.7 Fluctuating Energy Levels
    Part IV Theory of Ultrafast Kinetics
    in Laser-Excited Semiconductors
   14. Optical Free-Carrier Interband Kinetics
    in Semiconductors
    14.1 Interband Transitions in Direct-Gap Semiconductors
    14.2 Free-Carrier Kinetics Under Laser-Pulse Excitation
    14.3 The Optical Free-Carrier Bloch Equations
   15. Interband Quantum Kinetics
    with LO-Phonon Scattering
    15.1 Derivation of the Interband Quantum Kinetic Equations
    15.2 Approximations for the Green Functions G and G
    15.3 Intraband Quantum Kinetics
    15.4 Linear Polarization Kinetics, Phonon Sidebands
    15.5 Coupled Interband Kinetic Equations
    in Diagonal Approximation
    15.6 Numerical Studies
    16. Exciton Quantum Kinetics in Polar Semiconductors
    16.1 Interband Quantum Kinetic Equations
    with Excitonic Effects
    16.2 Quantum Beats and Urbach Tail
    16.2.1 LO-Phonon Quantum Beats
    16.2.2 Urbach Tail Absorption
    16.3 Excitonic Optical Stark Effect
    16.4 Coupled Quantum Kinetics of Electrons and Phonons
    16.5 Quantum Coherence of the Green Functions
   17. Two-Pulse Excitation
    17.1 Calculation of the Photon Echo
    17.2 Calculation of the Four-Wave Mixing Signal
    17.3 Comparison with Four-Wave Mixing Experiments
   18. Coulomb Quantum Kinetics in a Dense Electron Gas
    18.1 Introduction
    18.2 Derivation of a Closed Quantum Kinetic Description
    18.3 Simplifying Approximations
    18.3.1 Initial Time Regime Without Screening
    and Energy Conservation
    18.3.2 Time-Dependent Plasmon Pole Approximation
    18.3.3 Instantaneous Static Potential Approximation
   19. Interband Coulomb Quantum Kinetics,
    Optical Dephasing
    19.1 Interband Quantum Kinetic Equations
    with Coulomb Interaction
    19.2 Early Stage of the Coulomb Quantum Kinetics
    19.3 Quasi-Classical Theory of the Polarization Decay
   20. The Build-Up of Screening
    After Ultra-Short Pulse Excitation
    20.1 The Model
    20.2 Numerical Results
    References
    Subject Index
   

本目录推荐